

MEDICINAL PLANTS (NPPC 101c)

1ST YEAR STUDENTS (Pharm D)

Pharmacognosy Department

Faculty of Pharmacy

National University of Sadat City

Table of contents

No.	Topic	Page
1	<u>General Introduction and crude drugs</u>	1
2	<u>History of Pharmacognosy</u>	5
3	<u>Origin of Drugs</u>	12
4	<u>Cultivation of Medicinal Plants</u>	17
5	<u>Medicinal Plants and Environment</u>	22
5	<u>Collection and preparation of crude drugs</u>	29
6	<u>Packing of medicinal drugs</u>	33
7	<u>Preservation and protection of crude drugs</u>	42
8	<u>Adulteration of drugs and their detection</u>	51
9	<u>Chemistry of Crude Drugs</u>	58
10	Plant taxonomy	78
11	<u>Introduction of leaves</u>	88
12	Different leaves:	89-148
	a- <u>Senna Leaf</u> b- <u>Folium Digitalis</u> c- <u>Folium Stramonii</u> d- <u>Buchu Leaf</u> e- <u>Jaborandi Leaf</u> f- <u>Bearberry Leaf</u>	109 117 124 126 132 135
13	<u>References</u>	150

1. INTRODUCTION

Pharmacognosy is the scientific study of the structural, physical, chemical and sensory characters of crude drugs of vegetable, animal and mineral origin, and includes also their history, cultivation of the medicinal plants producing them and methods for their collection, and other particulars related to the treatment they receive during their passage from the producer to the distributor or pharmacist. One may briefly say that

Pharmacognosy is the objective study of crude drugs of vegetable, animal origin, treated scientifically.

The word Pharmacognosy is derived from the Greek **Pharmakon**, meaning drug or poison and gnosis or "**gignosco**" meaning to acquire knowledge of and literally meaning "**the entire knowledge of drugs**". The name was introduced by Sydler in 1615. He wrote a small book entitled "*Analecta pharmacognostica*".

Pharmacognosy was originally a branch of medicine, especially that of pharmacology. pharmacognostic knowledge has been employed throughout course of man's life on earth by primitive hunters who selected specific plants for preparing spear and arrow poisons; by priest-physicians and herbalists learned by trial and error that some plants had dispelled the symptoms of disease; by chemists who prepared more and stable products from the crude materials.

Pharmacognosy is an applied science, dependent on botany and chemistry. To study pharmacognosy, one must be well acquainted with botany and chemistry and have a good knowledge of geography, history, physics etc.

Present-day pharmacognosy considers not only the plants and animals that yield drug substances, but also the chemical, physical and biological properties of the substances and influence that these properties have on the methods employed

in harvesting the crude drugs, in processing and storing them, in the extraction and preparation of their active constituents and knowledge of their uses.

The living cells of plants and animals may be compared with factories that take in various raw materials, modify and recombine the constituents of the raw materials in different ways, eliminate some of the residues and finally yield a variety of chemical products.

Crude Drugs

The term “crude drug” may be considered with “Raw Drug” i.e the harvested and dried plant or animal sources of pharmaceutically or medicinally useful products before they have undergone processing or modification.

Crude drugs of vegetable, animal and mineral origin form the subject matter with which pharmacognosy is concerned.

Examples

Entire plants or animals: Mentha, Lobelia, Catharanthus, Thyme and Colocynth.

Entire members of plant or animal: Senna, Clove, Licorice, fennel, Cinchona, Linseed and Thyroid gland.

Minerals: Kaolin, Chalk and Talc.

Other categories of substances are also included, e.g. fibers and fabrics used for making surgical dressing; materials used as strainers for filtration or for clarifying cloudy liquids "filtration material" e.g. diatomite and asbestos; also, substances such as Agar, gelatin and wax.

Materials such as derris and pyrethrum, which are used for destruction of insect pests "Insecticides and pesticides" must be also included in the term of crude drugs.

Formerly crude drugs were termed "Simple Drugs" indicating that they exist as they occur naturally; not having been compounded or mixed with other substances.

- The roles of a Pharmacognosist:

The chief roles of a Pharmacognosist are:

- 1- Identification of the source of the materials forming a drug.**
- 2- Determination of its morphological characters.**
- 3- Investigation of the potency of the drug, its purity and freedom from admixture.**
- 4- Planning and to device methods of cultivation of the medicinal plants yielding these drugs.**
- 5- Prescription of details of processes of collection and preparation.**
- 6- Knowledge of the constituents of drugs and investigation of their chemical nature and reactions.**

- For detailed description of each individual drug, the following points are to be considered:

- 1) Origin; including biological sources, a knowledge of the history and name of the drug.
- 2) Cultivation and preparation; including details of cultivation of medicinal plants, methods of collection, drying, packing and other treatment of the drug during its preparation for the market.
- 3) Characters; including the physical characters such as dimensions, surface characters, fracture and the sensory characters such as odour and taste. The histological characters which help in the identification of the drug in powdered form, are of fundamental importance.

- 4) Constituents and Tests; constituents include both the reputed active constituents and also other constituents and reserve food materials. Chemical identity tests are based on the nature of the constituents.
- 5) Adulterants; including materials added fraudulently and matter which has become associated with the drug owing to carelessness in handling during collection, preparation, packing and transport.
- 6) Evaluation of the physical and chemical characters of the drug.
- 7) Uses and application of the drug in medicine.

- Classification of drugs for study:

Vegetable drugs are usually arranged for study in one or other of the following ways:

- a- **Alphabetical classification:** using either Latin or English names; the drugs are arranged in an alphabetical order.
- b- **Taxonomic classification:** Using one of the accepted systems of botanical classification; the drugs are arranged according to the plants from which they are obtained in phyla, orders, families, genera and species.
- c- **Morphological classification:** Dividing the drugs into groups e.g. leaves, flowers, fruits, seeds, herbs, roots and rhizomes, barks, woods, which are usually referred to as "Organized drugs", and groups as dried lattices, extracts, gums, resins, oil, fats and waxes, which are known as " Unorganized drugs".
- d- **Chemical classification:** the drugs are divided into groups according to their most important constituents e.g. Drugs containing volatile oils, glycosides, alkaloids, bitter principles, tannin, saponins, etc.

e- **Pharmacological classification:** A classification involving the grouping of drugs according to the pharmacological action of their most important constituents or their therapeutic use e.g. astringents, irritants, drugs affecting the gastro-intestinal tract, drugs promoting systemic effects on the muscle and nervous systems, drugs affecting the circulatory system, drugs used chemotherapeutically of infectious diseases, etc.

Each of these arrangements has certain advantages and disadvantages.

Official and Unofficial Drugs

Drugs are either official or unofficial.

- **An official drug** is one which is listed and described in a book recognized by the government as the legal authority for standards (pharmacopoeia). The first Egyptian pharmacopoeia appeared in English in 1953, and in Arabic in 1961.

2. HISTORY OF PHARMACOGNOSY

- Pharmacognosy is the oldest of all pharmacy sciences. The medicinal use of plants dates back to prehistoric ages. The primitive man had a good knowledge of the vegetable kingdom of his surroundings. Forests and meadows were the pharmacies that supplied him with the drugs needed for his medicinal use. Simple observation and crude experimenting with slight intelligence led him to differentiate between harmful and useful plants.
- The discovery of the healing properties of plants is as old as the human race and was attributed to the gods themselves. It was thought that poisonous plants were the abodes of evil spirits, and curative plants and herbs, the abodes of benevolent spirits or deities.
- Folk medicine emerged by acquiring knowledges of crude drugs. Very gradually primitive man learnt which plants were good for food) and which were

poisonous. He also found that some plants (spices or condiments) preserved meat and disguised unpleasant flavors and that other plants could be used for making extracts useful as arrow-or spear-poison (e.g. from species of *Strophanthus*, *Acocanthera* and *Conium*).

- Many vegetable drugs are known to us through the natives of countries where such plants are indigenous e.g. *Cinchona* bark and *Coca* leaves which had been used by the Indians of South America (Incas) since immemorial times.
- *Strophanthus* seeds had been used by the natives of Central Africa as an arrow-poison. Vegetable drug collectors (rhizotomists) were known since the early history of man. In this way many drugs still employed at the present day first came into use. Even now among certain primitive people, medicinal evolution is at this stage, and it is often found that plants which have a medicinal reputation are those which are most worthy of detailed scientific examination.

- Ancient Egyptian period:**

The ancient Egyptians 3000 B.C. were experts in using drugs for curing diseases. The healing of the sick was undertaken by priest doctor and pharmacist "son" who prescribed and prepared medicines. The first recorded prescriptions were found in Egyptian tombs. These are the hieratic papyri. The most precious papyrus was found by E. Smith, also known as the surgical papyrus. It is a copy of an old text dated 2980-2700 B.C. the other two papyri are; Ebers papyrus dated back to 3500 years, is now preserved in University of Leipzig, and the gynecologic papyrus of Kahn and Gurob. Certain Egyptian recipes were always containing magic and several vague formulae. Nevertheless, they contain about 400 primary materials enclosed probably in the "Egyptian pharmacopeia" of the ancient Egyptians. The first group of this

materials includes those of an animal origin e.g. blood, meat, horn, milk, e.g. honey, wine and excreta. The second group includes materials of vegetable origin e.g. Acacia, Aloes, Gum, Myrrh, Poppy, Pomegranate, Colocynth, Linseed, Squill, Coriander, Cumin, Palms, Onion, Anise, Grapes, Melon, Ergot, Castoretc. they used all the vegetable organs e.g. roots, rhizomes, flowers, leaves, fruits, seeds, as well as oils, and ashes. Also, they applied the mineral stones as alabaster, antimony, sulphur, salt and lead salts. They applied their medicaments in the form of powders, pills, suppositories, creams, cakes, pastes and ointments.

- The Mesopotamian Therapeutic Formulae:

- The Babylonian medicine, known through the interpretations of the tables written in cuneiform script (laws of Hammurabi 772 B.C.). The drugs used were mainly vegetable origin. The Babylonian king Marduk Happaliden II (772-710 B.C.) had built a garden for medicinal plants e.g. Apples, Pomogranate, Cucumber, Oranges, Garlic, Onion, Saffron, Fennel, Thyme, Coriander, Rose, Laurel, Liquorice, Asafoetida, Myrrh, Hellebore, Hyoscyamus, Cannabis and Opium.
- The Babylonian formulae showed no quantities or weights of the ingredients (c.f. Egyptian formulae). It seems that these were left to the ability of the dispenser and his personal knowledge. The other important notice was the application of the drugs in the form of a decoction, usually administered before sunrise, as the decoctions were prepared by night. The drugs were usually mixed with honey, water, oil or wine. The mesopotomian formulae includes 250 materials of animal source. Many of these drugs were known to the ancient Egyptians.

- Old Indian medicine:

- The principal aim of the old Indian medicine was to prolong human life, hence the knowledge of the secrets of vegetable drugs. So, the "Riveda" and Ayurveda (Acoko 2000 B.C.), contained sacred medicinal plants. The collection of plant materials was done only by an innocent, pure, religious person. The fresh plants were the most effective, and the plants must be taken from fertile soil, washed with pure water, exposed to sun for a certain period and protected in the shade, always directed towards the north. They classified drugs into two categories; the purgative group including cathartics, emetics, and this increasing nasal flow; and the tranquilizers. They used milk decoctions, butter, honey sugar, sesame oil as bases for oral medicines. Also, they used the powders as snuffs, smokes. The Cannabis was smoked as narcotic.
- The most celebrated Indian drugs are; Sandal wood, Clove, Pepper, Cardamom, Caraway, Ginger, Benzoin, Cannabis (hashish), Castor oil, Sesame oil, Aloes, Galangal and Cane Sugar.

- The old Chinese Medicine:

- Beside the famous acupuncture, the Chinese medicine is very acknowledged for the herbal medicine. The Pen Ts'ao Kang Moa 1000 B.C. (published only at 1597) contained an incredible number of medicinal plants and drugs of animal origin. The Chinese thought that for every disease, there must be a drug curing it; and this drug is only provided by the nature. So, their book includes many recipes for every disease. Among the plants highly esteemed for its magic health inducing power is Ginseng, other drugs e.g. Rhubarb, Ephedra, Star-Anise, Pomogranate, Aconite, Iron, Arsenic, Mercury and Sulphur drugs were greatly employed.
- The Pen Ts'ao Kang Moa could be considered as pharmacopeia, it includes 8160 formulae prepared from 1871 raw material essentially of decoctions, powders, pills, poultices, suppositories and ointments. Opium is a very old Chinese drug (1000 B.C.) for diarrhea and dysentery. The drugs were

also obtained from animal sources e.g. hairs of tigers, horns of animals, skin of snakes, molluscus, human secretions e.g. urine, blood, feces... etc. There is a lot in the old Chinese medicine to be discovered.

- The Greeks and Romans:

- They treated many diseases by drugs. Pythagoras (580 B.C.) used drugs as Mustard and Squill, etc. Hippocrates (466 B.C.) was familiar with numerous drugs, and wrote Corpus Hipocraticum 460 B.C. The ophrates, (370 B.C.) pupil of Aristotle enumerated about 500 plants; Ergot was one of them.
- The invasion of Alexander the Great (335-325 B.C.) helped to increase the number of drugs known at that time. The Greek Empire was followed by that of the Romans, and Dioscorides who was a Greek by birth, travelled to Egypt and other countries bordering the Mediterranean Sea and became acquainted with a great variety of plants and drugs. He was the first to describe drugs, and his work "Greek Herbal of Dioscorides" included not less than 5000 medicinal plants in addition to animal and mineral drugs. He is considered the first known pharmacognosist.
- Piny who lived at the same time as Dioscorides, was also an eminent author of natural history. Galen (134-200 A.D.) was a physician and to him is ascribed the use of "Galenical preparations".
- On the subsequent decline of the Roman Empire, a retrogression of scientific activity took place until the Arabian Empire rose.

- Islamic Contribution:

- When the Roman Empire crumbled in its turn and Europe entered the long night of the dark ages. It was the Islamic civilization that took up and kept light the torch of medicine, not only translating the Graeco-Roman medical literature into Arabic, but also adding commentaries and original observations.

- It is in Islamic writings that are to be found the first beginnings of chemistry; the very name of which is derived from an Arabic word "Kemia" as were also such familiar words alcohol and alkali. The Arabs added numerous new plants and medicaments to those already known to the Greeks and Romans. In their days, pharmacy attained its highest reputation and became an independent branch of medicine. It is interesting to note that the first dispensary was opened in Baghdad, the center of trade in those days. The dispensary was made of Sandal wood and named "Sandalia". Rhazes (850-932 A.B.) who was born at Rai in Persia, was a very prominent physician and the director of Baghdad Hospital in the days of El-Mansour. He published a famous book, "Alhawi Kabeer". **الحاوي الكبير**
- Outstanding among the Islamic writers was Ibn Sina (980-1037 A.D.) whose name was latinized to Avicenna. He was born at Bokhara and died in Hamadan in Persia. He was one of the most eminent and gifted Arabian physicians. His "Canon" of medicine has been described as "the most famous medical text ever written and as having dominated the medical schools of Europe and Asia and served as the chief source of medical knowledge for 5 centuries, till the 15th century". **"القانون"**
- Ibn Al-Baitar was born in Spain in 1197 A.D. and travelled in the North of Africa, Asia and stayed in Egypt, Mesopotamia and Syria. He died in Damaskus in 1248 A.D. He was the best Arabian pharmacognosist and botanist and ranks with Dioscorides in that respect. His book "Jame-ul-Muffradat" contains description of 2000 drugs. **جامع "المفردات"**
- Sheikh Dawood El Antaki. Wrote a book, named "Tazkarat Uli Al-Albab", now known as "Tazkarat Dawood Antaki" which describes several hundred herbs besides drugs of animal and mineral origin, it was written about 1008 A.D. **تنكرة داود**

- Al Buiruni wrote a famous book on pharmacy and material medica. In the days of the Arabian Empire, Baghdad, Cordova, Toledo and others flourished as centers of scientific research. The Arabian school was followed by that of Salerno near Naples.

- Modern age:

- The earliest books containing descriptions of drugs related to as "Materia Medica" were called "Herbals" e.g. "Ortis Sanitatis" 1485, meaning garden of health written in Latin and Published in 1491 and containing items from mineral, animal and vegetable origin arranged alphabetically. It was illustrated by rough wood cuts, mostly copied from German work "Herbaris zu Teutsch". The information consists of quotation from writings of Arabian (e.g. Rhazes & Avicenna), Greek (Dioscorides, Galen) and Roman (Pliny and Cato) authors.
- In recent years there has been an increasing trend back toward the use of certain animal drugs such as hormones and other glandular products. The raw materials from which these are derived are obtained largely from slaughterhouses as by-products of the meat-packing industries.
- A number of other medicinally or pharmaceutically useful products also are derived from animal sources. A few examples are Wax, Honey, Cochineal, which are derived from insects; oils from the livers of the Cod, Halibut and Shark; various venoms obtained from different species of snakes; and Wool fat, Rennin, Milk and lard. Animals may be important also as indirect sources of products. The horse and other animals are important intermediates in the preparation of various toxins and antitoxins that are used in combating diphtheria, gangrene, tetanus, scarlet fever, smallpox and other infectious diseases.

- The tissues of monkey kidneys and human placenta can be used as substrates upon which the poliomyelitis virus is cultured for production of anti-poliovaccine. Despite the increasing importance of animals in providing sources of medicinally and pharmaceutically important products, the majority of drugs of biologic origin still are obtained from plants.

Folk medicine and Phytotherapy:

Folk medicine has evolved through the knowledge's (acquired through centuries) of the preventive and curative properties of crude drugs. This knowledge was obtained from the different sources e.g. Verbally by communication with witches, hunters, worriers of primitive tribes, healers, herbalists, attars, Beduins. El Antaki and Mofradat Al Adwiah Wal Agzia of Ibn El Bitar.

The knowledge is verified by: Ethno-botanists to identify the exact species.

3. ORIGIN OF DRUGS

There are two origins for each drug; the natural or biological, as well as the, geographical origin. The commercial origin is also of interest in case of certain drugs. Once the remedial value of a drug is established, the pharmacognosist is in the first place interested in finding out the biological and geographical origin of this drug.

1- THE NATURAL OR BIOLOGICAL ORIGIN OR SOURCE:

The natural origin of a drug is the plant or animal yielding it; if it is a plant, botanical origin or botanical source and if an animal, Zoological origin or source. It is therefore essential for a pharmacognosist to have a sound background in biology. The knowledge of the biological source enables one to indicate with certainty the proper right material and the precise article one wishes to obtain and to ensure that successive consignments may have similar properties when used remedially. e.g. *Strophanthus* is used as a heart tonic and includes about 30

species; all from the same district in central Africa. One year, the drug is active, even poisonous, and in other cases, it is inactive. This is because the drug is gathered from any species which collectors may find. If the drug is obtained from one and the same species, the supply of the drug will be always of the same potency.

Despite the increasing importance of animals in providing sources of medicinally and pharmaceutically important products, many drugs of biologic origin still are obtained from plants.

In recent years, there has been an increasing trend towards the use of certain animal drugs, such as hormones and other glandular products. All phyla of plants contain species that yield drugs. Probably, about 1,000 species of plants currently are used as drugs, and plant world contains a number of medicinal plants that remain to be discovered.

The identification of the exact origin of the drug needs comparison with authentic or genuine samples or identification by comparison with herbarium or referring to gardens or museums.

The **binomial system** is due to the Swedish biologist Linnaeus. In this system the first name, which is always spelt with Capital letter, denotes the genus, whilst the second name denotes the species, it is however; still equally correct to use capitals where the species is named after a person. Thus, the species of Cinchona named after Charles Ledger, who brought its seed from Brazil 1865, is known as *Cinchona Ledgeriana*.

Before the binomial system, the name of the plant was a short descriptive phrase e.g. "Ranunculus foliis ovatis serratis, Scapo undo uniflora": which is now named *Ranunculus bulbosus* L.

It is noted that in pharmacopoeias and research papers, botanical names are followed by the names of persons. These refer to the botanist who first described the species or variety.

The specific name is usually chosen to indicate:

a- Some striking characteristics of the plant:

e.g. *Conium maculatum* (maculatum – spotted), (stem with reddish, spotted patches).

- *Glycyrrhiza glabra* (glabrous = smooth), (refers to the fruit of this species which is a smooth pod).
- *Atropa belladonna* (bella = beautiful, donna = lady), (The juice of the berry placed in the eyes causes dilatation of the pupils, thus giving a striking appearance).
- *Hyoscyamus muticus* (muticus = short), (The plant being short).

b- A characteristic colour:

e.g. *Piper nigrum* (= black)

- *Veratrum viride* (= green)
- *Citrus aurantium* (= golden-yellow)
- *Digitalis purpurea* (= purple)
- *Digitalis lutea* (= yellow)

c- An aromatic plant or certain aroma.

e.g. *Myristica fragrans* (having a nice fragrant aroma),

- *Caryophyllus aromaticus* (refers to the aroma).

d- A geographical source or history of a drug

e.g. *Cannabis indica* (growing in India).

- *Tamarindus indica* (India).

- *Olea arabica* (Arabia).
- *Iris germanica* (Germany).
- *Iris florentina* (City of Florence, Italy).
- *Illicit japonicum* (Japan).

e- A pharmaceutical activity or an active constituent

e.g. *Brayera anthelmentica* (expelling worms).

- *Papaver somniferum* (sleep inducing).
- *Strychons nux vomica* (From two Latin words, nut-causing vomiting).
- *Quillaja saponaria* (containing saponins).
- *Ipomoea purge* (Iaxative).

f- A general meaning or a special indication

e.g. *allium sativum* (= cultivated).

- *Triticm vulgare* (= wild).

g- The generic name may also be due to certain characters of the plant:

e.g.

Atropa, from Atropos, meaning the name of the Greek fate that cuts the thread of life, alluding to the poisonous characters of the drugs.

- *Agropyron* is from the Greek, agros = field, pyros = wheat.
- *Glycyrrhiza* is from glucose = sweet, riza = root.

- **The Egyptian Pharmacopoea 1984** gives the name of drugs in Latin, English, Arabic, as well as the German, French and Italian names, sometimes other synonyms are given also.

- Sometimes a name given to a plant is given by another author to another plant or sometimes two discoverers came across the same plant and gave different names.

Consultation of herbaria, museums and botanical gardens is the chief method of obtaining information. Careful observation of the drug may show matters of pharmacognostical significance to assist in its recognition.

2- GEOGRAPHICAL SOURCE OF DRUGS

The geographical source or Habitat is the region in which the plant or animal yielding the drug grows. Sometimes this term is applied erroneously to the drugs themselves. Knowledge of the geographical source also assists in the identification of the biological origin. Every climatic region of the earth from the Antarctic through the temperate and the tropical zones to the arctic is the native habitat of some species of animals and plants.

It is only natural, therefore that each climatic zone should be the native habitat of one or more species that furnish the raw materials for pharmaceutical and medicinal products. Drugs are collected in all parts of the world, though the tropics and subtropics yield more drugs than do the arctic and Antarctic regions. The Mediterranean region including Turkey yields more drugs than any region of the world. However, India, the East Indies, Central Europe, Northern South America, and central America yield numerous and valuable drugs. Plants growing in their native countries are said to be indigenous to these regions.

e.g. *Aconitum napellus* of the mountainous regions of Europe.

- *Hyoscyamus muticus* of Egypt.
- *Cannabis sativa* of India.

Plants, not of native origin, are called exotic plants. Study of the habitat is important because it would give an indication to the character of the soil, climatic

conditions, altitude (elevation from sea level). These factors must be studied as they have influencing action on the value of the drug used.

e.g.

- *Cannabis sativa* if grown in India is about one meter in height, produce weak fibers and much resin, but when grown in Italy, it is of different characters, producing a large tree with strong fibers, no resin, and the fibers are of economic value.
- *Cinchona calisaya* is native to Brazil and grows at high altitude in warm moist conditions which are similar to Java and India. When planted if flourished in Java and was successful, but in India it was not, as the soil of Java was more similar to that of Brazil being volcanic and porous, while in India the soil was not similar.
- Another rather different instance is found in the cultivation of *Hydrastis canadensis*, which is a plant of the forest floor growing in the shade of a canopy of trees, and consequently it would not grow well in cultivation in the open field.
- *Datura sauveolens* growing in Brazil contain mainly hyoscyamine and traces of hyoscine. When introduced in Egypt, it was found to contain hyoscine and mateloidine; in addition to traces of hyoscyamine.
- Important products are obtained also from inhabitants of oceans and lakes. e.g. Chondrus, Agar, Siliceous earth.

Production of Crude Drugs

- Production of crude drugs from their medicinal plants involves the following steps:
 - I. Cultivation.
 - II. Collection.
 - III. Drying.
 - IV. Packing.
 - V. Preservation and protection.

4. CULTIVATION OF MEDICINAL PLANTS

Plants have always played an important role in the life of man. They have not only made his life possible, but have provided him with shelter, food and clothing. It is not surprising, therefore, that in seeking remedies for his physical ailments, primitive man should instinctively, have turned to the plant kingdom. At any rate, at dawn recorded history, there already had been accumulated a vast store of knowledge concerning the therapeutic properties of different plants and

extracts there from. Egyptian papyri dating back as far as 2000 B. C, record the common use of Mustard, Linseed, Squill, Myrrh, Castor and many other items found in drug stores today. It is not clear at what time man first conceived and put into practice the idea of "capturing" useful plant and then assisting them in their struggle

for survival, first by eliminating their competitors (weeding) and later by increasing the fertility of the soil through the addition of fertilizers and through crop rotations. However, it is known that crop plants were cultivated in Egypt, Mesopotamia and other land that cradled civilization at least 5,000 years ago, and very likely much earlier. In fact, man began the practice of agriculture so long ago, and consciously or unconsciously, so modified plants by selection and breeding that the wild ancestors of some of our most important crop plants are unknown. Early agriculture was not limited to the Eastern hemisphere. The practices and techniques employed in raising other crops. Plants that yield drugs may be propagated from seeds, cuttings, root stocks, tubers, bulbs or corms depending on the species. In the case of some woody species characterized by

Tree-like or shrubby habits of growth, scions of a strain or variety with desirable commercial characteristics may be grafted on stocks of some other variety, just as is done in the case of fruit and nut-trees. Likewise, the problems that plague the producer of drug plants are like those met producing food or other crops, although they are more numerous in the case of drug plants. Not only must the producer of these plants contend with the usual problems of irrigation, fertilizing the soil, weeding and the ravages of insect, fungus, and bacterial pests, but with several others as well; for example, biochemical variations, induced genetically or by external environmental influences, sometimes result in the formation of different chemical components, in a different proportion of components or in a diminished yield of essential compounds. Drug plants is the

problem of what crops should raise in order to be assured of a reasonable market. Certain drugs are now obtained almost entirely from cultivated plants. e.g. Cardamom, Cannabis, Ginger Ceylon Cinnamon, Linseed, Fennel, Cinchona and Opium. Some plants are cultivated because supplies of the wild plants are insufficient to meet the demand or because, owing to sparse distribution or inaccessibility, collection is difficult. Drugs may be collected from wild growing or cultivated plants.

- Disadvantages of Collection of drugs from wild growing plants:

- 1) Wild plants are found in "sparse distribution" over unlimited areas and are not confined to a limited space.
- 2) The difficulty in reaching these plants as they are mostly growing in deserts or forests where the access or way is always difficult, also difficulty in collecting drugs from these plants such as collecting barks from high trees and roots of wild plants growing in rocky situations.
- 3) The continual collection of wild plants, usually spoken of as "Ruthless collection" leads to great deficiency.
- 4) Collection of wild medicinal plants is usually done by ignorant, unskilled people who lead to collection not at the proper time, as well as adulteration of the plants.
- 5) Difficulty of transport, when the natural home of the plant is far from ordinary means of transportation.
- 6) Insufficiency of supply of wild plants to meet demand of the market.

- Cultivation is essential in the case of drugs such as Indian hemp and Opium which are subject to the government control being a social necessity, and to prevent monopolization.

For the success of cultivation, it is necessary to study the condition under which the plants flourish in the wild state and reproduce these conditions or improve them.

- Advantages of Cultivation of medicinal plants:

- 1) Concentration of a large number in a small, controlled area, which is easily accessible.
- 2) Improvements of the drug and better development of the plants owing to improved conditions of soil, fertilizers, different methods of cultivation as grafting, hybridization, control of insect pests, fungi, enhancing (raise the quality) of the drug by selection of good strains of seeds which yield plants of better nature and higher active constituents, e.g. Chamomile acquiring double flower heads, Cinchona obtained in small quills from the cultivated instead of the heavy quills and large "flats from the wild, and Cinnamon in finer smaller quills with more agreeable aroma instead of the heavy coarse quills with coarse flavor from the wild trees.

This is achieved by:

- a) Selection of a strain of seed yielding plants of robust growth and high activity as in the case of the production of digitalis leaf and Belladonna leaf, as well as, to confine collection to species, varieties or hybrids which have the desired characters as in Cinnamon, Cinchona, Aconite, etc.
- b) The treatment of the seeds before sowing to ensure germination and to improve the activity of the drugs. Hyoscyamus seeds treated with sulphuric acid hasten germination. Treatment of the seeds with colchicine, producing polyploids has also shown that the alkaloidal content of Belladonna can be doubled and that of Henbane can be increased by about one-third, while for species of Datura, increases of from one-third have been obtained.

- c) Treatment of dormancy, the delayed germination of seed, i.e. period of dormancy may be caused by the nature of the seed-coats, by the condition of the embryo or by a combination of both factors, i.e. seed coat dormancy, embryo dormancy and chemical inhibition of germination.
- 3) The assurance of regular and constant enough supply which has helped in several instances, as in Cinchona, to breakdown monopolies and thus rendering these drugs cheaper, and easily obtainable.
- 4) All the operations are carried out by trained workers instead of being left to the casual treatment of unskilled collectors. The processes of collection, drying, and storage can be adequately controlled on farms and plantation, are carried out by trained workers instead of being left to the casual treatment of unskilled collectors.

Examples:

- a) Leaves like digitalis and Solanaceous drugs can be collected when in best conditions and rapidly dried in artificially heated chambers: all under skilled supervision.
- b) Chamomiles and other flowers can be collected as they come the proper stage of flowering and then dried so as to retain their colour.
- c) Drugs like Cinnamon which undergo special treatment during preparation are better and more uniform quality when obtained from plantation and prepared by workers who are accustomed to the process.
- 5) Cultivation of the drug in proximity to the pharmaceutical firm for the manufacture of galenical, thereby the drug, can be taken directly from the field into the factory for immediate use, thus preventing deterioration of the drug by bad handling or by temporary storage. The yield of the products is improved economics are affected in labor and in transport.

- 6) Indirectly, cultivation makes contribution to pure science. Such subjects as the role of alkaloids and glycosides in the life of plants are advanced by a study of the constituents of plants grown under controlled conditions.
- 7) Cultivation affords a valuable method of Control of purity of the product. It is e.g. very difficult to free small seeds such as Linseed and small fruits from weed seeds once the crop has been harvested; but careful weeding during the cultivation, the purity of the finished product is assured. Drugs such as the roots of Aconite and Belladonna which are liable to admixture with other roots when collected from wild plants will be of uniform purity if cultivated. Cinchona also, when collected from wild trees in the mixed forests of the Andes was often mixed with foreign banks, owing in part to the difficulty of identifying the scattered trees; this type of adulteration is entirely avoided by cultivation.

5. MEDICINAL PLANTS AND ENVIRONMENT

For the success of cultivation of medicinal plants, it is necessary to study the conditions under which medicinal plants flourish in the wild state and reproduce these conditions or improve them.

Water supply, temperature and light are the most important factors for a well-balanced normal growth and proper development of medicinal plants. These factors regulate plant growth in many different ways as evident from the fact that plants respond to daily changes, seasonal changes and other fluctuations of climatic components.

Other factors influencing plant growth are the characteristics of the soil, plant nutrients and the different Biological Elements, the neighboring plants, the microorganisms in the soil and even the animals, which graze on the plants and disseminate the seeds. These various factors control not only the

distribution of plants in nature but also the pattern of the world agriculture, crop yield and the success or failure of certain crops in particular regions.

1- WATER

Importance of water:

- 1- It is an important component of the cell which is the building unit for every living creature.
- 2- It is a vital factor in all biological reactions and transformations in living beings; it can act as medium, catalyst, part of the biological reaction or even product of it.

- Water is essential for every organ to carry on its life functions. Rain is the only source of sweet water on the earth. Every living creature is created from water. Few plants obtain water directly from water vapour contained in the air; but precipitation in the form of rain is certainly the chief source of available water to land plants. This water penetrates the soil, from which it is taken up by the plant roots. Of all the materials used by the plant for its growth and maintenance, water is the one taken in largest amount. The bulk of water absorbed by plant through the roots is not retained but evaporates into the air from the leaves and the other aerial parts of the plant. This water loss by evaporation is known as "Transpiration". The occurrence of transpiration seems to be a natural consequence of the basic facts of plant anatomy. The leaves consist of water-filled mesophyll cells whose wet surfaces are in intimate contact with the intercellular spaces. These, in turn, lead through the stomata to the outside atmosphere. Water therefore evaporates from the mesophyll cells and is conducted through the intercellular spaces to the external air. The water lost from the leaf mesophyll is replaced by water brought up from the roots through the vascular system of the plant. A plant may thus be thought of as a sort of a wick, through which water is brought up from the soil through the root, conducted through the stem and evaporated

from the leaf into the air. The total amount of water removed from the soil by a growing plant is large in comparison to the amount present in the plant at any one time. A single corn plant, for example, contains approximately two liters of water, but during the course of its growth, it may have removed this amount 100 times from the soil. The mineral and water resources of the soil are tapped by the plant through an amazing ramified system of roots and root hairs which develop in enormous numbers. Root hairs provide the main point of entrance for water into the plant. The total root length of plants must be measured in miles, and the number of root hairs counted in millions or billions. Thus, a single wheat plant has been found to possess as much as 44 miles of roots, while a single rye plant, growing in a container 12 inches square and 22 inches deep, produced 3387 miles in four months. Rainfall has a great influence on vegetation. Not only must the total rainfall be considered, but whether it is evenly distributed throughout the year or whether it occurs only at certain periods. Thus, in the cultivation of Cacti, etc., in green houses, some approach to natural rainfall conditions should be aimed at. The effectiveness of a given amount of precipitation or of a given supply of soil moisture in supporting plant growth depends in turn on the water losses from plant and soil through evaporation. The ratio of precipitation to evaporation can be correlated roughly with the type of vegetation in a particular region.

2- TEMPERATURE

Temperature divides the world into varied vegetative zones and plant growth is greatly affected by temperature. The effect of temperature on the individual processes and reactions within the plant is finally expressed in its effect on the plant growth as a whole. Temperature has a great effect on seedlings. As the temperature increases, the rate of growth also increases until optimum value are reached. Above this optimum temperature, a further increase in temperature leads to a decrease in growth rate. This is due to the fact that chemical

reactions, in general, increase in rate as temperature is increased, but as temperature is still further increased, other reactions, such as the heat denaturation and inactivation of proteins of the plant retard growth and the composite effect of the two counteracting processes result in an optimum temperature curve. For each plant, growth is designated by three temperatures: the minimum, optimum and maximum. Alpine and arctic plants may germinate at temperature close to 0°C and may have maxima as low as 10°C, whereas many tropical species may have their entire range above 10°C. Corn would not germinate below 10°C or above 46°C and its optimum temperature is 34°C. the maximum and minimum temperature for seed germination determine not only the geographic distribution of plant species but also the season of the year at which particular species appear in a given region. It is interesting to know that after seed germination and as the Plant progresses towards reproductive maturity, optimal temperature and even the minimal and maximal temperature required for growth frequently shift.

- Under natural conditions and in most climates, the day temperatures are higher than the night temperatures, so that there is a regular diurnal temperature cycle. These diurnal changes in temperature are important in their influence on plant growth. The optimum day temperature for growth and development of many plants is higher than the optimum night temperature. Plant growth is therefore greater at an appropriately fluctuating temperature than in any single constant one. To this fact the name "Thermo-periodicity" is applied. Thermo-periodicity is clearly an important aspect of the relation of temperature to plant growth. Typical thermo-periodic responses are shown by many different species of plants, particularly those which are native to the temperate regions, where diurnal temperature fluctuations are a characteristic feature of climate.

- Tropical plants, which grow normally in regions of little diurnal temperature changes, frequently show little or no increase in growth in response to

fluctuating day and night temperature but grow best at constant temperatures. Excessive cold causes damage to plants. One of the important aspects of temperature in determining plant distribution is the damage caused by excessive cold. Tropical species are, of course, unable to tolerate low temperature, and for this reason are excluded from temperate climates. Temperate zone species, on the other hand, accommodate themselves to cold either by producing cold resistant seeds, as do many annual species, or by actually being or becoming resistant to low temperature. Although tropical plants may be damaged by temperatures well above freezing. Plant damage by cold generally results from actual freezing of tissues and hence is associated with temperatures below the freezing point of water.

- It is well established that tissue damage due to freezing is caused by the formation of ice crystals within the plant. Crystallization may occur either within the cells of the tissue or in intercellular spaces. The formation of ice within the cell, which appears to be the most actual cause of freezing injury may take place in the protoplasm as well as in the vacuole. Besides the effect of water and temperature, the aspect and altitude affect the growth of medicinal plants. in general, the highest temperature is experienced near the equator, but as the temperature falls about 1°C for every 343 feet of elevation, it is possible, in say, Jamaica to have a tropical climate on the coast and a temperate one in the mountains. The annual variations in temperature are just as important as the temperature of the hottest month. In Singapore, the annual range of temperature is as little as 2.5°F , whereas Moscow, with its hot summer and cold winter has a range of 52.7°F .

3- Altitude

- Altitude must also be considered. The coconut palm needs a maritime climate, and the sugar cane is a lowland plant. On the other hand, Tea (3.000-6.000 feet), Cacao (300-500 feet), Coffee (2.500-5.000 feet), medicinal Rhubarb, Tragacanth

and *Cinchona* require elevation. In the case of *Cinchona succirubra*, the plants grow well at low levels but produce practically no alkaloids.

- The choice of localities with particular type of climate enables the cultivator to obtain a product with specially desirable qualities. Thus, Ginger cultivated in Jamaica has an aromatic flavour superior to that from other countries, while the same plant cultivated in Africa yields much more pungent product and these two varieties are commercially valuable in different industries.

4- LIGHT

Plant varies much both in the amount and intensity of the light which they require. In the wild state the plant will be found where its shade requirements are met, and under cultivation similar shade must be provided. In certain cases, researchers have shown that light is a factor which helps to determine the amount of glycosides or alkaloids produced. The northern and an eastern aspect are usually colder and moisture than southern or western ones but is often modified by the situation of the land. In tropical climates, wind protection if often necessary and is afforded by planting shelter belts of plants such as *Ricinus communis*.

- The maximum intensity of sunlight at noon at a clear, cloudless day is 10,000 to 12,000 foot-candles. During a day cycle, light intensity rises from a predawn minimum to the noon maximum only to approach zero again at some time after sunset. The plant is therefore exposed during the day to continuously varying light intensity and spends large part of even a cloudless day at intensities less than the theoretical maximum. It is not surprising, therefore, that most plants are capable of carrying out full growth and development at intensities much lower than 10,000 foot-candles. Sunflowers and Tomato, both typical sun-loving species, are capable of normal growth even if they are shaded to the extent that the light does not exceed 2000 foot-candles. Species which characteristically grow in shaded localities can remain alive at exceedingly low intensities, sometimes

not over a few feet-candles. The effects of light intensities on the growth of plants are related mainly to the role of light in PHOTOSYNTHESIS. For a plant to remain alive over a prolonged period of time, light intensity must be sufficient to cause photosynthetic carbon dioxide fixation during the day in an amount which will balance the 24 hours respiratory loss. Thus, minimal light intensity for plant survival must slightly exceed the compensation point, at which photosynthesis and respiration are balanced during the day.

The amount of light intensity adequate for survival varies greatly among different plants. the response of plants to length of day, or more correctly, to the relative length of day and night, is referred to as PHOTOPERIODISM. During the summer season, the duration of daily period of solar illumination is greater than 12 hours, whereas during the winter, it is shorter than 12 hours.

- We recognize that plants fall into three broad photoperiodic classes with respect to their flowering behavior:

- 1) **Short-day plants:** These plants flower only when the daily period of illumination is shorter than a particular critical length. e.g. Soya bean, Tobacco, Chrysanthemum.
- 2) **Long-day plants:** These plants flower only when the daily period of illumination exceeds some critical duration. e.g. Oil, Henbane, Spinach.
- 3) **Day-neutral plants:** These plants flower under any of a wide range of day lengths, e.g. Tomato, Corn, Capsicum.

- Light regulates the growth of the plant in still other ways. Light is required for the processes of photosynthesis and the formation of chlorophyll. Seedlings grow in darkness (etiolated seedlings) not only lack chlorophyll but also exhibit morphological abnormalities. The internodes of such seedlings are unusually long, and in general almost no leaf development takes place. Shortening of the internodes and the growth of leaves can be brought about by illumination

of the seedlings with as little as a few minutes of light per day. The amount of light energy needed to bring about this morphogenetic effect is thus smaller than those needed to cause significant amount of photosynthesis. Since the growth and development of the plant depend both on photosynthesis and on other light controlled processes it is not surprising that a wide range of wavelength of light is required for the production of a normal plant.

5- SOIL

Soil is a mosaic of rock particles, plant roots, microorganisms, decaying organic matter, aqueous soil solution and interconnecting air passages. Soil is formed through weathering of the parent rock by the action of water, wind and other climatic factors, together with the effects brought about living organisms. Soil is a storehouse of water and minerals required for the growth of plants. Soil differs from one another both in physical and chemical properties. Soil is composed of mineral matter, formed by the weathering of rock and decaying organic matter or humus. Other things being equal, soil composed of fine particles, e.g. the soil of deltas is more fertile than that composed of larger particles. All plants require calcium for their normal nutrition. Certain plants, however, e.g. *Pinus pinaster* and *Digitalis purpurea*, known as calciphobous plant, cannot be grown on chalky soils probably owing to alkalinity.

- The moisture in the soil may be regulated by draining or by irrigation-Tillage operations; are directed towards the breaking up and stirring of the soil to facilitate the entry of air, which increases the available amount of plant food, to assist drainage and to produce a loose, friable medium suitable for the germination of seeds and the free growth of roots. On a small scale, this is done by means of the spade, hayfork and rake and on a larger scale by ploughs, cultivators, harrows and rollers.

6. COLLECTION AND PREPARATION OF DRUGS

Drugs may be collected from Wild or cultivated medicinal plants. The qualitative and quantitative composition of plants may change markedly during the course of the growing season. To ensure maximum quality in crude drugs, it is important that the plants from which they are to be produced be collected at the appropriate season and when in the proper phase of their developmental cycle. The proper time of collecting drug plants as well as the proper part of the plant and the proper stage of development must be carefully studied. Although the active principles of different drug plants may be distributed in several or in all parts of the plant, generally they are more concentrated in certain organs, and it is these organs that usually are collected as the commercial drug. In some kind of plants, the active principles occur in certain organs or even in specific tissues of these organs. Collection may be done by skillful laborers or by casual people.

FACTORS AFFECTING COLLECTION

1- Time of the year: It has been found that the constituents' very in amount and nature throughout the year, thus the plant in winter may contain substance which are not present in the same plant in summer, or also, the amount of this constituent in the plant may be less or more,

Examples:

- 1) Rhubarb contains no anthraquinones in winter, but contains anthranols, which on the arrival of warmer weather are converted by oxidation to anthraquinones.
- 2) Colchicum corm is almost free of bitterness and almost devoid of its active constituent colchicine in autumn and is full of starch. So, it is collected at the end of autumn and used by the peasants of Austria as food instead of potatoes,

but it bitter and more active in spring and early summer when it should be collected for medicinal use.

3) *Hyoscyamus* contains less alkaloids in winter than in summer.

2- Time of the day: As time of the year is of influence on the value and activity of the drug. Also, time of the day is of great affect, and is an important factor in determining the concentration of active principles in drug plants.

Examples

1) It has been reported that the concentration of the desired glycosides is higher in vigants collected in the afternoon than in leaves collected in the morning. It has been suggested that the active glycosides undergo hydrolysis to physiologically less active aglycones during the night and recombine with sugars during daytime.

2) In *Salix* leaves, it was noticed that the amount of glycosides increases during photosynthesis and decreases at night.

3) Roots and rhizomes are rich in mucilage and starch e.g. *Salep* is usually collected in the morning when these constituents are at maximum.

4) The alkaloidal content of the Solanaceous leaves is higher in the morning than in the afternoon.

3- Stage of maturity and age: The value and activity of the drug depend also on the stage of maturity of the plant and its age.

Examples:

1) *Conium* fruits contain the alkaloid coniine, when the fruits are mature but unripe.

2) *Santonica* flowers are most rich in santonin when they are unexpanded and when they start to open, the santonin content starts to decrease.

3) All Solanaceous leaves contain the maximum amount of alkaloids when the plant is in the flowering stage.

- Certain Pharmacopeas specify the time and stage of collection of certain important drugs as they should be collected when containing the highest amount of active principles, and also, they will have a good appearance when dried.

Examples:

1) The E. P. 1984 specifies that lobelia herb must be collected towards the end of the flowering stage.

2) The E.P. 1984 states that Belladonna leaf must be collected from plants in flower.

3) The E.P. 1984 states that Santonica flowers are collected from unexpanded flower heads.

- It is important to determine the proper season for harvesting most drug plants. The usual time for collection of leaves is when the flowers are just beginning to expand, or the flowers is just arriving at its height. At this time, it is reasonable to assume that the whole plant has arrived at its maximum vigour and the leaves are in the healthiest state and contain an optimum of the products of the plant metabolism and therefore should be at this period of their development suited to exert the most desirable therapeutic action. Time of collection is sometimes varied for special reasons, e.g. highly prized Tea leaves are collected when still unfolded in the bud; Coca leaves are collected when nearly ready to fall from the stem; UMO UMI leaves are collected at any time of the year, leaves should not be collected when covered with dew or rain. Any leaves which are discoloured or attacked by insects should be rejected.

- Collection of flowers must be always made dry weather it was petals which are damp when gathered become badly discoloured. Since flowers must be obtained in good condition. They must be gathered at precisely the corned time

and consequently the process of collection may extend over several days, or in some cases, weeks. Collection is usually made by picking or cutting the Mowers by hand. Clones, Red Rose and wormseed are collected when in bud; Chamomile and Insect-flower when just fully expanded.

- General rules for the collection of medicinal plants:

- Storage tissues or organs such as roots, rhizomes, bulbs, etc. should be collected at the end of the active assimilatory period, i.e. they should be harvested in autumn or winter, usually after withering of aerial parts and before the vegetative process starts and when their tissues are fully stored with reserve food and also the medicinal constituents. The plants are dug out and washed.
- Stem barks are collected in spring when the bark can be stripped from the trunk and branches more easily after active sap-flow has begun, or after a period of moisture when easily removed from the wood. Incisions are made longitudinally or transversely.
- Seeds being storage organs are collected when mature. Unorganized drugs must be collected. In dry weather and taken care to exclude vegetable parts.
- Drugs collected from wild plants differ from those of cultivated plants e.g. *Cinchona* from large tree in the Andes is in very large pieces or in heavy quills, while cultivated bark is in medium or small quills or pieces which are coated with a layer of calcium carbonate or sulphate, which is rather undesirable.
- In case of certain unorganized drugs e.g. gums, appearance depends on methods of preparation, and the general appearance of the drug depends on the type of incision, *Tragacanth* is produced in flattened band

form, by slit shaped incision and vermiform. If the plant is punctured, Acacia gum is usually in the form of tears.

DRYING OF MEDICINAL PLANTS

Fresh organs, when collected are either used as such (fresh) and used instantaneously or dried to be used later.

- Reasons for drying processes:

- 1) To aid in their presentation.
- 2) To fix their constituents i.e. to check enzymatic or hydrolytic reactions that might alter the chemical composition of the drug.
- 3) To prevent the growth of microorganisms such as bacteria and fungi.
- 4) To facilitate (grinding into a powder).
- 5) To reduce weight and bulk, to facilitate packing, storage and transport.

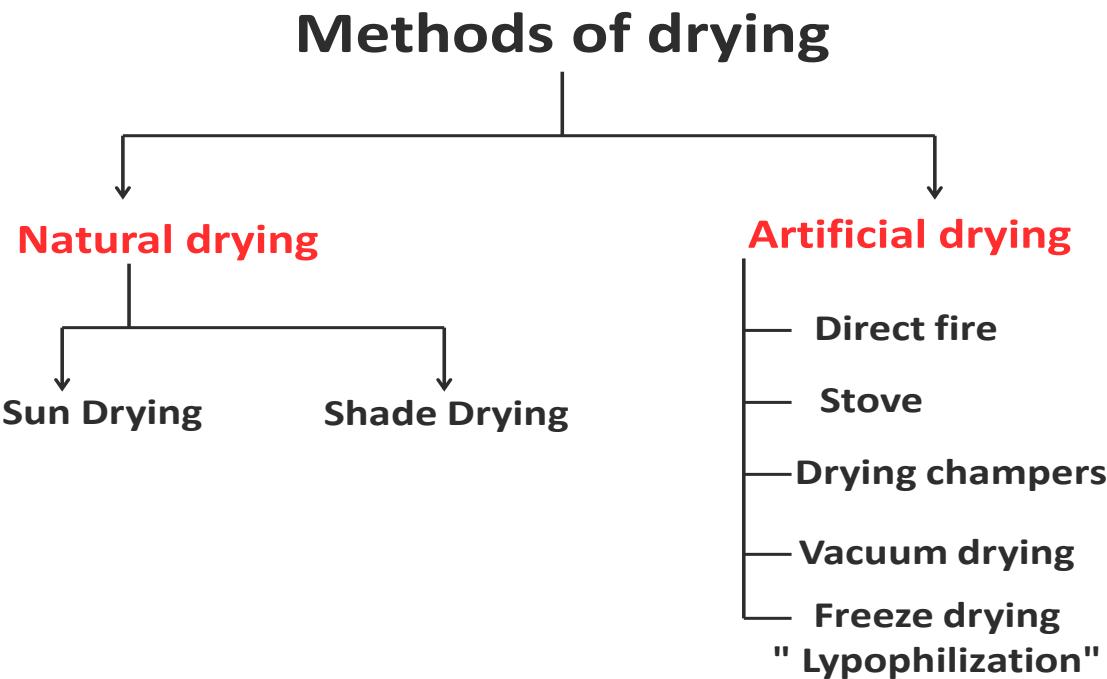
- Fresh organs usually contain a high percentage of moisture and drying takes the moisture content. When a fresh drug is dried, it loses a great percentage of its weight mainly due to the water present e.g. Couch grass loses about 60%, Poppy loses 82%.

- Drying is best accomplished by the proper regulation of temperature and humidity of air.

- Insufficient drying favours spoilage by moulds and bacteria and also makes possible the enzymatic destruction of active principles by the moisture present. Drying must be carried out as rapidly as possible. The duration varies from a few hours to several weeks, depending on the structure and water content of the drug.

- The moisture requirements for the active growth of the common molds and bacteria that may be found in or on drugs are relatively low. Therefore,

the drying process should reduce the moisture content of the drug below this critical threshold level: Since the moisture requirements for enzymatic activity and that which microorganisms demand vary not only with the species, but also with other environmental factors (e.g. temperature, oxygen and carbon-dioxide, light, etc.), it is difficult to state a precise upper limit of moisture that can be permitted in crude drugs. Most drugs may be stored safely if the moisture content is reduced to 6 per cent or less, A notable exception is Agar, for which up to 20 per cent is allowed.


- Not only the ultimate dryness of the crude drug is important. Equally important are the rate at which the moisture is removed and the conditions under which it is removed; if the rate is too slow, much spoilage may occur before the drying process is completed. Therefore, in general, drying should be accomplished as rapidly as is consistent with good practice, the duration of the drying process varies from few hours to several weeks, depending on the structure, the water content and other features of the drug.

- Consideration of the time during which an elevated drying temperature is maintained, is important, because destructive enzymatic reactions are accelerated by increasing the temperature, although the net effect of most such reactions commonly encountered in the preparation of crude drugs is accelerated only up to approximately 45°C but higher temperatures shorten the time required for drying, and thus the time during which destructive reactions can occur also is shortened.

- Obviously, there is an optimum combination of the temperature and the time factors for each drug. The methods employed for drying are variable in detail, but they may be classified as natural or as artificial.

- Artificial methods may be physical, that is, involve the use of elevated temperature and/or decreased pressure (vacuum) or the use radiation of infra-red or

radio- frequency wavelength; or they may be chemical that is to involve use of desiccants.

- **Natural Drying:** is the use of climatic heat; thus, the drug is dried by exposure to direct sun, or spreading in the shade by putting on the *floor or* mats or trays in a single layer and as drying proceeds, drugs are turned over, Whether the drug is dried in the sun or shade, it is protected from moisture and so it is covered at night or in periods of rain.
- When heat and ventilation are properly controlled, the plant material is thoroughly dried and produces a drug of maximum quality both in the constituents and appearance.
- **Artificial drying:** has the distinct advantage over air-drying in that it immediately stops enzymatic action. In *Digitalis* e.g. the natural moisture content of the leaf is sufficient to cause an enzymatic hydrolysis of the cardiac glycosides as soon as the leaf is harvested. If the leaves are allowed to dry naturally, a very rapid hydrolysis of these glycosides occurs.

- Artificial drying is a rapid method, usually done at a well-controlled temperature.

Artificial heat may be applied by:

- 1) Direct fire.
- 2) Use of heated stones.
- 3) Use of stones; these must be done carefully to prevent the damage produced to drugs when dried e.g. scorching or burning. Extensive heat produces gelatinization of starch, as well as smoke will import to the drug a smoky odour.
- 4) Drying sheds or chambers. The process is controlled completely and is unaffected by difficulties arising from changes in weather. For this purpose, a shed is constructed with openings in the upper part of the walls or in the roof for the exit of the moist warm air and inlet for fresh air near the floor, adjacent to which the heating apparatus is placed. Heat is supplied either by stoves or more commonly by hot water pipes within such a shed; a staging is constructed of wooden uprights having shelves of coarse wire-netting placed in a vertical position, upon which the drugs are placed on pieces of canvas, which can be removed as the drugs become dry and replaced by fresh drugs. Care is taken that drugs, becoming dry are moved downwards on the lower shelves and fresh drugs are placed upon the uppermost shelves, so that moisture given off from the fresh drugs may not dampen the already partially dried ones. Other arrangements consist of chambers into which a large stand with shelves for the drugs can be run on wheels moving on rails and heated air is either drawn or forced over the shelves from back to front of the chamber by means of a fan and drying is quickly affected.

- Another method of drying is to use table dryer. The temperature used is about 50 to 60°C. Some forms of vacuum ovens for drying leaves as Digitalis, which are rapidly and efficiently dried by this means.
- Fairly rapid drying helps flowers and leaves to retain their colour and aromatic drugs to keep their aroma, but the temperature must be governed by the constituents and physical nature must be governed by the constituents and physical nature of the drug.
- Special vacuum ovens consist of double jacket walls, inside which are shelves set alternately, the oven is connected to a condenser, receiver and a vacuum pump, high speed drying is applied for sensitive drugs e.g. Digitalis. The drug is dried by exposure to high temperature 800°C for 8 fractions of a second under reduced pressure.
- An "Absolutely dried drug" is that completely freed from water. When exposed to air, it absorbs 8 to 10% of moisture and is called "Air-dry drug".
- As a general rule leaves, herbs and flowers must be dried between 40°C and 60°C while barks and roots are dried between 40 and 80°C.
- Exactly how far drying is to be carried out is a matter of practical experience. Over-drying is objectionable as it renders drugs brittle and breaks to small particles during transport.
- Large roots and rhizomes are generally sliced transversely or longitudinally or in both directions to facilitate drying. They are usually spread out on a floor or on shelves, which in suitable weather may be arranged out of doors under a roof so that the warm air may blow through them. Care must be taken that the finished drug is completely dry to the center as evidenced by its breaking with a short, crisp fracture; carelessness in this operation leads to appearance of molds during storage. Most roots and rhizomes require from 10 to 20 days to dry thoroughly.

- Barks are dried either in the sun or shade or by means of artificial heat, depending largely on the constituents.
- Leaves require greater care in drying than other plant parts and are usually air-dried at a very low heat.
- Fruits and seeds are generally dried before harvesting and especially before threshing. Usually, they are spread on trays and are sun or shade dried.
- Several changes may occur on drugs during the drying process.

- **Changes would affect the general appearance or constituents of drugs:**

- 1) Size and Weight, due to loss of water where Drugs get smaller in size and they lose 80 to 90 % their original weight.
- 2) Shape and appearance. Some drugs shrivel and shrink when dried, and the surface gets wrinkled or reticulated; changes which depend on the nature and hardness of the tissue structure and amount of water lost e.g. black pepper on drying shows polygonal reticulations, due to the presence of stone cells in the hypodermis. The petiole of *Datura stramonium* leaves becomes hooked and bent on drying as it contains more collenchymas on the lower than the upper side. The shape of certain unorganized drugs depends also on the mould in which they are dried and packed.
- 3) Texture, fresh organs are generally firm on drying, drugs containing starch horny due to gelatinization of starch.
- 4) Colour, generally on drying, the drug becomes darker in colour, but certain cases, a total change may occur e.g. red puppy, when fresh is scarlet-red becoming dull violet on drying. Tea leaves change from green to dark brown almost black Vanilla changes from yellow to dark brown. The green colour of certain drugs change to brown on drying due to decomposition of chlorophyll,

either by the influence of the acidic sap or of heat and oxygen. Flowers may lose their colour especially when red or blue, due to the destruction of the anthocyanin pigments producing these colours.

5) Odour, in certain drugs, drying changes the natural odour e.g. *Digitalis* and *Hyoscyamus* lose their bad odours, when dried; a change which is not objectionable as it does not affect the

active constituents. Vanilla pods odorless, when fresh, and on drying acquire a fragrant, pleasant, aromatic odour due to the liberation of vanillin which has a nice aroma.

6) Taste of the drug may be altered e.g. Gentian is very bitter when fresh and becoming pleasant on drying.

7) Constituents of some drugs may change due to drying e.g. the purine bases, present in some fresh drugs in a combined glycosidal form are hydrolysed on drying and the dried drugs contain the free bases.

Fresh Vanilla pods contain the glycosides gluco-vanillin and gluco-vanillic alcohol. On drying, hydrolysis of both glycosides and oxidation of vanillic alc. to vanillin occurs.

One should always notice if these changes, occurring on drugs are required or are objectionable, so as to control the drying process accordingly. If these are required, drying is done slowly and the temperature controlled so as the changes are optimum. If the changes are objectionable, drying must be carried out as rapidly as possible and controlling the temperature so as not allow these changes to occur, usually by carrying out the process to minimize the effect of the enzymes at a temperature below 35°C. Rapid drying not only prevents the decomposition of active principles, but also retains the colour of the drug.

7. PACKING OF MEDICINAL DRUGS

- The packing of drugs is dependent on their final disposition. Packing may be loose or by use of considerable pressure. If drugs are transported or stored, it is customary to choose that type of packing that will provide ample protection to the drug as well as economy of space.
- Leaf or herb material usually baled with power balers into a solid compact mass. For overseas shipment such bales weigh from 500 to 800 pounds. Seeds and fruits as well as rhizomes and roots are usually packed in burlap bags.
- Wooden or corrugated paper boxes and barrels are also common shipping and storage containers. Drugs likely to deteriorate from absorbed moisture (e.g. Digitalis, Ergot) are packed in moisture-proof cans. Gums, resins and extracts are shipped in barrels, boxes or sacks, sometimes cans, Vanilla pods in lead or tin-lined boxes.
- Volatile oils are shipped in enameled cans. Clove is packed in sacks, known as "mats", made of coconut leaves.

1) Effect on appearance:

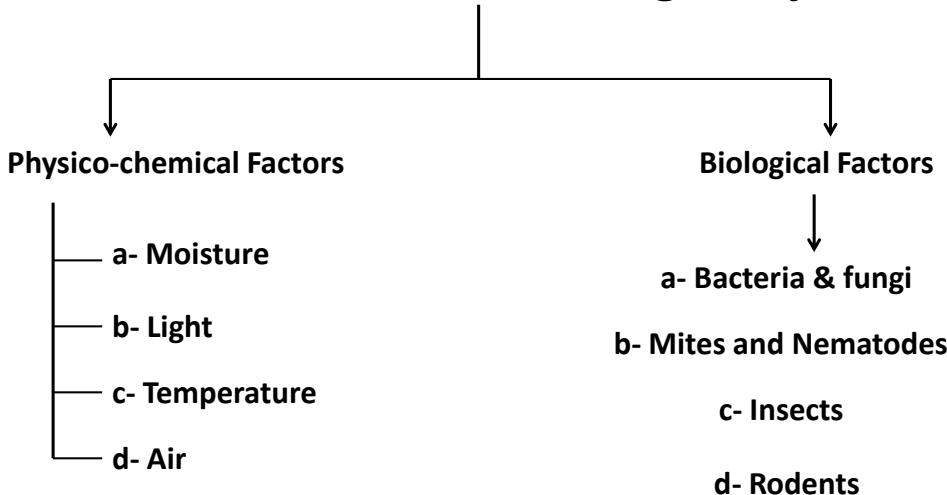
The various ways of packing usually affect the appearance of the drug. e.g. Indian Senna leaves are packed into large bales, using hydraulic pressure resulting in the leaves being flatter and showing faint oblique or transverse markings where the midribs and margins of other leaves have been impressed.

- Twigs of *Ephedra* have characteristic transverse lines from the strong compression used in making the bales.
- Indian Hemp in the form of "guoza" is flattened by the pressure of trembling feet, and in the form of "ganjah" is rendered more less cylindrical by rolling under feet or in hands.

- Indication: Packing also may give indication to the geographical source and part of transport of the drug. e.g. Aloe is the dried juice obtained from various species of Aloe plants.

Cape aloes (South African) are exported in wooden boxes or in cases; usually each case containing 2 tins.

- Zanzibar aloes (East African) were packed in leaves or skins (monkey or Gazelle). The skins and their contents, each weighing 30 to 40 pounds, are packed in cases, but now it is exported in cases, 58 kg.
- Curacao (West India) is packed in wooden cases which have been used to import wine.
- Socotrine aloes (East African) is usually found in small wooden cases and in barrels, sometimes in tins.
- Opium, which is the dried latex from the unripe capsules of *Papaver somniferum L.* is collected principally in Turkey, Yugoslavia, Persia, India and China by incising the capsules in various ways and using various instruments. **Turkish opium** occurs in sub-cylindrical cakes about 9 cm high and 14 cm in diameter, coated with coarsely powdered Poppy leaves, giving them a greenish mottled appearance; a circular official label is attached to the side of each cake. **Yugoslavian opium** formerly came in oblong cakes with rounded ends. Externally they are coated with broken poppy leaves and show marks of wire netting where they were dried. The industry is now under government control. **Indian opium** is imported in 5 kg blocks wrapped in 2 sheets of thin grease proof paper and tied with tope and placed in polyethylene bags


8.PRESERVATION AND PROTECTION OF CRUDE DRUGS

- Crude drugs are subject to many hazards at all stages in their path from the living plant or animal to their ultimate use in pharmacy. Storage represents the last

stage in the handling of crude drugs before being used and it is a most important stage.

- Drugs usually deteriorate either slowly or rapidly in time of storage with such as Cascara and Frangula barks which should not be used except after a certain storage few drugs e.g. Nux vomica are hardly affected by storage.
- Certain pharmacopoeias give well, clear instructions concerning time of storage, after which drug should not be Digitalis, Ergot, filix mass, Cannabis, for their active constituents decompose hand they get less active. Mostly the change that take place during storage of drugs are objectionable e.g. Filix mass: the green interior becomes yellowish- brown; aromatic drugs gradually lose their aroma; Ergot acquires a disagreeable odour, seeds and fatty drugs become rancid, volatile oils become thick and resinified. In addition, certain drugs may undergo imperceptible changes e.g. absorbent cotton gradually losses its absorbency pouter on storage. Improper methods of storing and inadequate protection during storage can be responsible for the complete loss of shipments of crude drugs; a loss which entails more than merely the particular lot of drugs. The destruction of a batch of crude drugs at this stage in its history represents waste, at least for the season during which the drug was produced, of the land on which it was grown and waste of labor, time, energy, facilities and money spent in raising, collecting, drying, processing and transporting it. Hence, it is imperative that proper procedures and precautions be employed to protect drugs from deterioration during storage and that, in general, long storage be avoided whenever possible.

The principle factors responsible for deterioration of crude drugs may be

The principal factors responsible for deterioration of crude drugs may be considered under two headings, i.e.

Physicochemical and biological: The principal physical chemical factors involved in the spontaneous deterioration of drugs are moisture, heat, air, and light.

Biologic factors: responsible for the deterioration of crude drugs during storage are principally fungi, bacteria and especially insects and rodents.

- PHYSIO-CHEMICAL FACTORS

Moisture alone is sufficient in many instances to affect drugs adversely. The active principles of Digitalis and of Ergot undergo rapid change, resulting from the presence of enzymes, which need a sufficient degree of moisture to actuate them, and in the case of Digitalis, it is any amount over 5%. The moisture present in drugs depends largely upon the amount of moisture in the atmosphere, which is usually expressed in terms of humidity. When the atmosphere is completely saturated, the humidity is 100% when half saturated 50% and so on. If the humidity in stores or warehouse is greater than 75%, stored

materials such as Starch, Squill, Gentian, Gelatin and Digitalis will absorb moisture until deleterious mounts are present. Small amounts of moisture (less than 5 to 6%) may be virtually inconsequential in many crude excessive undesirables for reasons. It not only increases the decreasing the drug, thus decreasing percentage of active but it also favours the growth of fungi, bacteria and enzymatic activity *Drugs* stored in the usual containers; sacks, bales, wooden cases, cardboard boxes, and paper bags reabsorb about 10 to 12% or more of moisture. They are then termed "Air-dry". The permissible moisture-contents *will* be found *in the* pharmacopoeias. Air-dried drugs are always liable to the attack of insects and other pests. Drugs be frequently examined during storage and showing mold or worminess should be rejected. Moisture is always present in the air and a number of crude drugs, especially those containing gums, mucilage or hydrophilic colloids and those derived from fleshy roots, rhizomes, bulbs, etc. are quite hygroscopic and tend to absorb moisture from the air. Sandy soil on the other hand, lose mater rapidly by drainage and consequently tend to produce a low humidity in the air of the cellar, thus affording a safer storage place than a cellar made in clay soil. The process of stabilization inhibits enzymatic action and retains the drug without alteration in shape and constituent. The inactivation of enzymes is either:

1) **Temporary**, i.e. for a certain period (partial stabilization), when drugs are kept under conditions un- favorable for enzymatic action by completely drying the drug and keeping it in absolute dry conditions e.g. by placing in contain- nears over a dehydrating agent as quick lime. It is better to put the dehydrating agent in the stopper of the container and not at the base, thus giving no chance for moisture to get in contact with drugs. Such drugs keep their activity, also the colour.

- Valuable drugs as Saffron are best kept on powdered form, in hermetically sealed or dried containers or ampoules and each container an amount sufficient to be used once.

2) **Complete Stabilization**, done by destructing the enzyme and rendering it inactive permanently. This is done by exposing the fresh drug to alcohol vapors or immersing the fresh drug in alcohol.

- Light, adversely affects many drugs, especially those assessing marked colour. Rhubarb rapidly changes from yellow to a reddish tint, Rose petals, flowers of Henbane and other coloured or white corollas quickly turn brown, Digitalis also loses its activity more rapidly in sunlight, and santonin slowly" darkens to orange and eventually becomes black.

- These colour changes were quickly noticed, but light also brings about decomposition of important constituents, such as glycosides and vitamins; changes which were not immediately obvious. Commodities such as cod-liver oil, yeast and Digitalis must therefore be protected by storage in dark or by the use of opaque or amber-coloured glass containers.

- Polarized light has been shown to produce changes more rapidly than ordinary light and, as reflected light is always to some extent polarized, direct sunlight reflected on the drugs in store will bring about rapid deterioration. It has been shown for example that polarized light rapidly brings about decomposition of the active principles in Digitalis tincture. Temperature has marked effects, sometimes unsuspected. Many enzyme-changes proceed more rapidly at a slightly raised temperature up to about 45°C, and similar conditions will often induce molecular rearrangements.

A good example of the latter condition is that of absorbent cotton; the molecules in the slight residue of the fatty matter of the cuticle

gradually become orientated in such a way that water cannot penetrate the extremely thin film and the cotton, once fully absorbent, loses this property and eventually becomes entirely nonabsorbent; this change is much hastened by raising the temperature slightly above the normal air temperature. Other drugs directly affected by temperature are those containing volatile oils, such as Buchu, Chamomile and Ginger. Moisture and temperature together have a combined effect upon the materials stored in them.

- Oxygen of the air brings direct oxidation of constituents of some drugs; thus, linseed oil and the cannabinol of Indian hemp rapidly become resinified; oil of Turpentine and oil of lemon also experience a similar change. Cod-liver oil gradually thickens, darkens in colour and becomes resinous; colophony, if powdered, quickly alters in constituents.
- The general rule for the preservation of drugs is to store them in moisture-proof, airtight, light-proof containers at as low temperature as is practicable. Drug containing volatile constituents should be given cool storage conditions, kept in air-tight containers. The preferable one is a tin-box with a pressed-in lid to prevent volatilization. The rim of the lid should be smeared with paraffin wax.
- Drug such as Digitalis and Indian hemp should never be allowed to become air-dry, or they lose a considerable part of their activity. They may be kept in sealed containers with a dehydrating agent. For large quantities, the bottom of a case may be filled with quicklime and separated from the drug by a perforated grid or sacking. If the lime becomes moist it should be renewed.

- Volatile oils should be stored in sealed, well-filled containers in a cool, dry place. Similar remarks apply to fixed oils, particularly Cod-liver. The air in the container is sometimes replaced by an inert gas.
- Drugs are sometimes stored in wooden cases or drawers which is very objectionable, as they are liable to deteriorate and odours are communicable from one drug to the other e.g. Asafoetida, Drugs kept in paper bags are also objectionable as paper may become torn and drugs are mixed and odours communicate and are easily attacked by insects and rodents. Ideally, crude drugs should be stored in about 15°C «refrigerator» from 2–15°C. Expiration storage covers the range dates are specified for certain drugs.

- BIOLOGICAL FACTORS

Major biological causes of deterioration of crude drugs during storage are infestation by various micro-organisms and insects and contamination by rodents. Drugs may deteriorate if not carefully fumigated. The most common living organisms in drugs are bacteria, molds, mites, nematodes, worms and insects. Cotton fibers rendered brittle by bacterial attack, thus causing the trichomes to break into short lengths, which make the cotton-wool objectionable, dusty. Bacteria produce red patches on bread, potato and starchy drugs. The molds present belong chiefly to the groups *Mucor*, *Penicillium* and *Eurotium*. The mycelium of delicate hyphae produces an unpleasant mass of clinging particles in powdered drugs and in such materials as *Lycopodium*, which have the mold can be recognized by its fructifications, which are carried on vertical branches arising from the mycelium. *Mucor*, grey mold and *Rhizopus*, black mold, have a spherical sporangium containing very numerous minute spores.

- Mites and sometimes Nematode worms may be found infesting drugs in large numbers. Mites belong to the same group of animals as the spiders and can be recognized under the microscope by having 4 pairs of legs, and by the more or less oval form of the body, which shows division into two parts. Mites appear as glistering, bladdery specks, visible to the naked eye, in such substances as crushed linseed, wheat flour, in which they multiply rapidly and swarm in countless numbers. Nematode worms sometimes found in Wheat flour are visible to the unaided eye as minute threads continually curling and twisting. Nematode worms have been found in stems of Belladonna. Insects attack nearly all drugs, but it seems they have certain preferences, and certain drugs are more subject to attack than others, e.g. Aconite, Belladonna, Ginger, Kola, Linseed, Liquorice, Rhubarb and Sarsaparilla.

- Usually there are four stages for insects; eggs larvae pupa and imago. The eggs are laid on the drug during preparation or package or even before collection. The eggs hatch producing the larvae with strong mandibles which eat the tissue and drugs get harsh, brittle internally and lose their shape and appearance.

- Certain insects can survive on a diet consisting in some cases of poisonous drug plants some insects consume mostly cellulose and the starch portions of the drug and carefully avoid the cells or the tissues containing the active constituents. Most insects belong to the moths, or the beetles, but one also finds such insects as cockroaches, and ants. Beetles can be detected in powdered drugs by the characteristic form and distribution of hairs on their body.

- Moths are unable to damage drugs, but they lay their eggs in the dried vegetable material, and the grub which hatch out feed upon the drug and rapidly reduce it to powder. They attack such materials as Valerian root,

Henbane and Poppy. These various animal pests produce quantities of droppings which form a good medium for the growth of bacteria and molds and as a result the whole mass soon becomes unpleasantly smelling mass of crumbling drug containing much powder largely formed into clinging masses held together by fungal hyphae or the webbing spun by caterpillars about to pupate. Materials which have thus become badly infected are best destroyed by burning and the store places in which they have been kept must be thoroughly cleaned.

- The most commonly employed methods of controlling insects in crude drugs are heating treatment fumigation, liming and low temperature storage:

a- The heat treatment, which consists of exposing the drug to a temperature of 60 to 65°C, is often effective, especially for insect eggs that are not penetrated rapidly by insecticides. The duration of the exposure is determined the volume of drug to be treated. It may vary from a few minutes to several days. Prolonged exposure to high temperature may inactivate enzymes destroy thermo labile drugs and causes loss in volatile oil content.

b- Drugs may be fumigated by the use of various volatile insecticidal agents in close areas. Carbon tetrachloride is satisfactory and has the advantage being non-inflammable. Carbon disulfide and cyanide gas sometimes are used but are highly poisonous and must be carefully applied. Para-dichloro-benzene, methyl bromide, a mixture of ethylene oxide and carbon dioxide are of common use.

- A Gas is now commonly used for fumigation of medicinal plants and drugs. It is a mixture of 90 % Ethylene oxide and 10 % carbon dioxide.

- More recently the effects of ionizing radiation have been studied from sources such as ^{60}Co on cereal pests such as Tyroglyphus mites. Small doses inhibited

reproductive ability and larger ones destroyed both mites and their eggs. Most fumigants do not kill the eggs of insects, and therefore it is common to repeat fumigation at intervals of two weeks, to give a better chance of eliminating all insects, since time is permitted for eggs to hatch and young larvae are killed. Stored drugs that are susceptible to insect attacks should be fumigated routinely every 3 or 4 months. If plants are to be fumigated, as for example in a greenhouse, it is desirable to fumigate at night, since plants often are more sensitive to such poisons in the daytime their stomata are partially closed.

c- Liming, a procedure used for few drugs e.g. Ginger, Nutmeg, to discourage insect attack, affords partial protection. The drug is dipped in freshly slaked lime or sprinkled with quick lime to coat it with a fine powder which clogs the spiracles (breathing tubes) of larvae and adult insects.

d- Low temperature storage, where possible, is to be prepared for fumigants and liming. Adult insects, pupae, larvae and eggs sometimes are killed by extremely low temperatures.

- Exposure to subfreezing temperatures -10 to -15°C for 12 to 18 hours sometimes will destroy even eggs. Exposure to alternate periods of low and high temperature frequently is more effective for killing insects than a prolonged period of low temperature exposure.

- Rodents, also cause much spoilage of crude drugs during storage particularly if the drugs are in paper, cloth, cardboard or wooden containers. The presence of filth of rodents, their hair and excreta cause rejection of many drugs. This can be eliminated largely by packing, shipping and storing the products in glass, plastic, or metal containers.

- One of the most common causes for the imported crude drugs at the port of entry and of the condemnation of domestic crude drugs is the presence of filth and or of rodent hairs and excreta. Rodent hairs and excreta often can be

detected microscopically, and the presence of rodent urine on drugs can be detected by placing the drugs under a source of ultraviolet radiation. This test is not infallible, however, since a number of drugs fluoresce and, in some cases, the wavelength emitted by the drug is similar to that emitted by urine. Alpha napthylthiourea (A.N.T.U.) and other rodenticidal compounds may be used to eliminate rats and mice.

PRESERVATION AND PROTECTION OF CRUSE DRUGS

- Crude drugs are subjected to many hazards at all stages in their path from the living plant or animal to their ultimate use in pharmacy.
- Storage represents the last stage in the handling of crude drugs before being used and it is a most important stage.
- Drugs usually deteriorate either slowly or rapidly in the time of storage with few exceptions such as Cascara and Frangula barks which shouldn't be used except after a certain period of time.

9. ADULTERATION OF DRUGS AND ITS DETECTION

Adulteration, in the broad and legal sense, is the debasement of any article, many methods have been used and are still used for the adulteration of drugs. In general, adulteration occurs when a drug is scarce or when the price of a drug is normally high, though there may be no scarcity.

- The adulterant must be of some material which is both available in fairly large amounts. Availability and price limits are selected of adulterants.

Adulteration Involves:

- 1) **Sophistication or true adulteration:** The addition of a spurious or an inferior material to any article with intent to defraud e.g. addition of wheat flour to powdered Ginger, with enough capsicum to restore or enhance the pungency and enough curcuma to maintain the color. Small masses of

flour dough molded to the correct size and shape of ergot, and colored, by dipping first in red ink and then writing ink. Nutmeg has been similarly imitated by culling pieces of bass wood to the required shape or by molding a mixture of clay and leguminous meal. Coffee also has been imitated by compressing powdered chicory into the shape of coffee beans. Paraffin wax colored yellow has been substituted for beeswax,

- Artificial invert sugar for Honey Pieces of string dipped in red ink have been substituted for Saffron.

2) **Substitution:** an entirely different article used or sold in place of the one required or asked for. A complete substitution, even though intentional and fraudulent, is not sophistication, as none of the true articles are present.

However, all substitution are considered legally as adulteration.

- Methods of Substitution:

a) Substitution of inferior commercial varieties e.g. Arabian Senna, obavate Senna (dog Senna) and Provence Senna have been used to adulterate Senna.

- Cochin, African and Japanese Ginger to adulterate medicinal Ginger.

- *Capsicum minimum* fruits and chides for *Capsicum annum* fruits.

b) Substitution of exhausted drugs, e.g some commodities are used in very large amounts for the manufacture of preparations after which the vegetable residue retains the appearance of the original material very much. Sometimes as in the preparation of volatile oils from Cloves or from Umbelliferous fruits at Caraway and Fennel, the ungrounded drug is used end the dried exhausted material closely resembles the genuine drug, similarly with drugs like Cascara degrade and Ginger. Where colouring matter has been removed during

exhaustion, the residue must be recoloured by artificial dyes as is done with Saffron, and Red Rose petals.

- Another example is balsam of tale that has been deprived of cinnamic acid. Exhausted gentian has had its bitterness restored by adding aloes to it.

c) Substitution of superficially similar but true, heat, fungi, insects, or other means. Whole Cloves from which part of the oil has been removed distillation (spent clove); ground Linseed from which oil has been expressed; powdered Squill, hardened through absorption of moisture; Coffee which lost its caffeine through over-roasting; Ergot which is moldy; Rhubarb that has become wormy; are all examples of deterioration.

d) Spoilage: a form of deterioration in which the quality or value or usefulness of an article is impaired or destroyed by the action of fungi to render the article unfit for human consumption. All drugs, which are unfit for human or other animal consumption, are adulterants.

e) Inferiority: is any substandard condition for any cause. The dried ripe seeds of Nux-vomica, containing less than 1.15% strychnine, would be inferior or substandard drug. Addition of synthetic principles, to fortify inferior products such as adding citral to oil of lemon, or benzyl benzoate to Balsam of Peru is considered an adulteration.

f) Addition of worthless heavy materials: A large mass of stone has been found in the center of Liquorice bales. Pieces of limestone are found in Asafetida. Lead shots have occurred in pieces of Opium. Addition of barium sulphate and of manganese dioxide to Black Grain, Cochineal, addition of mineral, vegetable oils, glycerin or ammonium nitrate to Saffron.

g) The presence of adventitious matter naturally occurring with the drug, if in excessive amounts, also constitutes an adulteration, as also does the occurrence of large amounts of parts of the plant other than that which constitutes the drug.

e.g. epiphytes, such as masses, liverworts and lichens may occur in unusual amounts cheaper natural substances, usually having no relation to genuine drugs, e.g.

- Leaves of Phytolacca and Scopolia for Belladonna.
- Peach kernels and Apricot kernels for Almonds.
- Leaves of Kanthium for Stramonium and of Dandelion for Henbane.
- Clove stalks and mother cloves are often mixed with cloves.

h) Admixture: the addition of one article to another through accident, ignorance or carelessness. If the addition has been done intentionally to defraud, it is Sophistication. Admixture may occur through faulty collection, as collecting the drug not at the proper time, e.g. collecting Solanaceous leaves in summer; Wild cherry in autumn; Colchicum corm in early autumn, *Filix-mass* in late autumn, as well as collection at the last stage of development e.g. collecting Linseed when fully ripe; umbelliferous fruits, when most, but not all are fully mature and ripe; collection of other parts of the same plant e.g. stems, stalks, aerial parts with leaf drugs, collection from other plants by mistake or ignorance of collectors, e.g. Argel instead of Senna leaves. Imperfect preparation of the drug either by removal of desirable structures or non-removal of associated structures e.g. non-removal of stems from leaves, causes objectionable admixture.

- Neglecting proper drying conditions e.g. drying Colchicum over 65°C and incorrect storage conditions e.g. Cascara and Frangula must be collected at least one year before being used.

i) Deterioration: impairment of the quality of the drug by the abstraction or destruction of valuable constituents by distillation, extraction, aging, moist on barks like Cascara or

Cinchona, and on excessive amounts of stems may be present in drugs like Lobelia or Stramonium, stems of Buchu are sometimes cut into short pieces and added to the leaves.

- When considering powdered drugs, it is generally powdered waste products of a suitable colour and density that are used. Thus, powdered Olive stones are added to drugs like powdered Liquorice and Gentian, powdered Guaiacum wood to Nux vomica, Hazel nut shells to Cinnamon, exhausted Ginger to Colocynth and Ginger; Bran, saw dust to powdered Ipecac, Mustard hulls to Santonica, Red Sanders wood to Chilies, Walnut shells, Coconut shells and Almond shells are also used.

If the colour needs adjustment, it is sometimes done by roasting the adulterant till the tint is correct.

- Adulterants of food and drug powders

The systematic microscopically examination of commercial food and drug powders has revealed the more or less frequent occurrence of a number of less, valuable substances used for the purpose of sophistication. Such substances, suitably adjusted in the fineness of their powder if simple, or in their composition if mixed, have from time to time been openly offered for sale in large quantities. They generally consist of byproducts obtained in various industrial operations and are of inferior value, if not worthless, as either food or drugs.

- The more important of these adulterants may be classified as follows:
 - 1) By-products obtained in the milling of wheat, Barley, rice coat, Aye and Maize; Bran etc., Maize cobs (cobs meal).
 - 2) The cake produced in the extraction of certain fixed oils, Linseed, Ground Nut, Almond, Rape, Coconut, Palm nut.
 - 3) Shells obtained in shelling nuts: Almond, Walnut, Coconut, Hazel nut etc.

- 4) Seed: Date stone, Apricot, olive stone, chestnut, Beans, Peas.
- 5) Various wood: Pine wood, Quassia wood, Red Sandals wood.
- 6) Exhausted residues: spent Ginger, Cinnamon.
- 7) Inferior dried fruits: Pears, Apples.

- Detection of Adulterants

The detection is:

- I) to establish the identity of the adulterant
- II) To determine the quality of the drug.
- III) To establish identity, several methods are considered: gross morphology, histology and microscopically morphology, microscopically linear measurements, solubility, qualitative chemical tests, physical constants, ultraviolet light, assay, yield to solvents, ash, crude fiber and quantitative microscopy.

a- **Gross morphology:** for ungrounded drugs, e.g. *Strophasnthus* species, Dill, Senna pod, Buchu, Anise, Rhubarb.

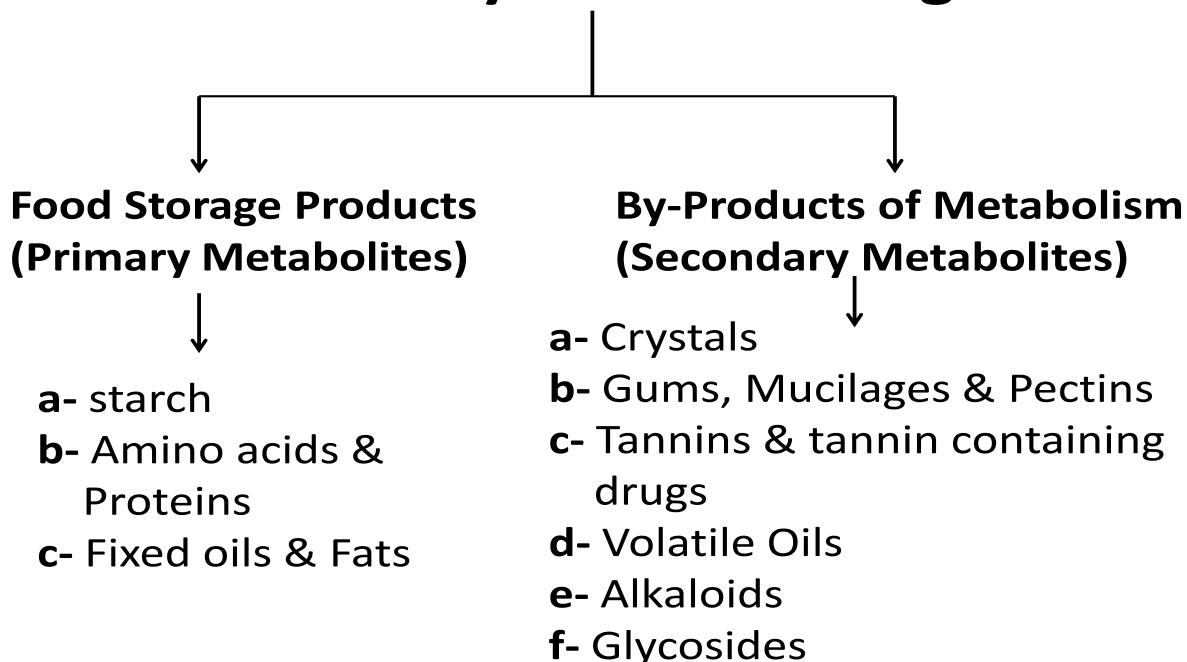
b- **Histology:** calcium oxalate, trichomes, vien islet number, stomatal index, palisade ratio.

c- **Linear measurements:** e.g. starch in Ipeca, Cinnamon, Senna stalk in leaf.

d- **Solubility** e.g. Colophony, Castor oil.

e- **Qualitative chemical tests:** mostly colour tests oils. Anthraquinones, iodine for starch, specific tests for alkaloids.

f- **Physical constants:** specific gravity, optical rotation, viscosity, refractive index.


g- **Ultra – violet light:** e.g. Rhubarb, Derris, Calumba, Wild-cherry.

- h- **Yield to solvents:** e.g. linseed, Gentian, Liquorice, unreasonable amount of woody matter or pieces or bark of *Cassia*.
- i- **Ash:** e.g. exclude limed drugs.
- j- **Crude fiber:** to detect excessive wood material.
- k- **Quantitative microscopy:** number of starches per mg, Lycopodium method, Length of fibers.
- l- **Uniformity of quality** is promoted by the use of (Standards) which are numerical quantities by which the quantities by which the quality commodities may be assessed.
- **There are three kinds of pharmacognostical standards in common use:**
 - 1- Structural standards.
 - 2- Analytical standards.
 - 3- Physical constants.
- The identity is established by comparison with authentic samples.
- The organoleptic evaluation of Drugs. Organoleptic (impression on the organs) refers to evaluation by means of the organs of sense. It includes the macroscopic appearance of drugs, its odour, taste, the sound or snap of its fracture, and the feel of the drug to the touch.
- The macroscopic characteristics of a drug are divided into four:
 - 1) Shape and size, external markings.
 - 2) Colour.
 - 3) Fracture and internal colour.
 - 4) Odour and taste.

- The odour and taste of drugs may indicate the nature of active constituents' present.
- The taste is the sense by which some soluble constituents in the saliva are tested by the tongue. Drugs may have saline taste (perceived at the back of tongue); sweet (tip), bitter (posterior third); acrid or sour (side); alkaline or metallic, aromatic balsamic, spicy, disagreeable, or may be tasteless.
- Certain substances give a distinct sensation in the tongue, e.g. mucilaginous (mucilage containing drugs), bland (oily drugs), astringent (tannin), pungent (Capsicum, Pepper), acrid, bitter (glycosides, alkaloids, bitter principles), sweet (sugars) numbness (Coca, Aconite).
- The odour is due to certain volatile constituents in drugs, usually perceived by heating or breaking. Certain drugs possess characteristic odours e.g.; Cloves, Pepper, Ginger, and particularly drugs containing volatile oils, Distinct bad odours indicate the presence of such substances as isovalerianic acid, e.g. Valerian or of sulphurated compounds as in Asafoetida, Ammoniacum and Galbanum.
- Certain odours are antagonized by others. No odour indicates absence of volatile substances. The colour helps in the identification and detection of drugs, e.g. greenish, leaves; white, starches; red, brown cinnamon etc.

10. CHEMISTRY OF CRUDE DRUGS

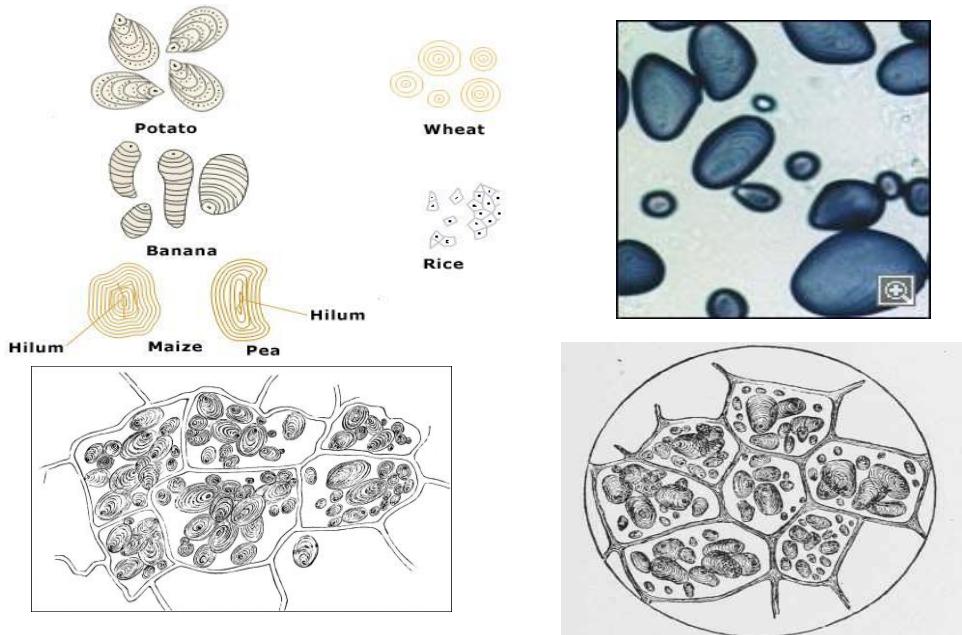
Chemistry of Crude Drugs

1- Primary Metabolites:

a- Starch:

- Starch is the most important carbohydrate present in the plant cell.
- It is formed by accumulation of glucose molecules formed during photosynthesis.
- It is a polysaccharide of glucose units with the general formula $(C_6H_{10}O_5)_n$.

- **Starch consists of two molecules:**


- 1- Amylopectin (80 %): is a branched sugar insoluble in water.
- 2- Amylose (20 %): is a linear chain of glucose units soluble in water.

- **Special chemical test for Starch:**

Starch suspension + dilute iodine solution \longrightarrow Blue color

- **Uses of Starch:**

- 1- Dusting powder due to its absorbent properties.
- 2- Skin emollient (in mucilage forms).
- 3- Antidote for Iodine poisoning.
- 4- Suspending agent and tablet disintegrants.

Some starches of commerce

b- Proteins:

- They are complex nitrogenous compounds of high molecular weight.
- Chemically: polypeptides of amino acids.
- i.e. mixtures of amino acid units joined together by peptide linkages through elimination of water.
- Stored by the plants usually in the form of amorphous masses or small particles called **Aleurone grains**.

• **Microscopical chemical tests for proteins:**

• **1- Millon's reagent**

stains proteins **red** on warming

• **2- Picric acid**

stains proteins **yellow**

• **3- Iodine solution**

stains proteins **yellowish brown**

c- Fixed oils and Fats:

- Esters of long chain fatty acids of high molecular weight.
- i.e. Stearic and Oleic acids and glycerol.
- Being either solids or liquids depends on the proportion of esters of saturated (solid i.e. Stearic acid) or unsaturated (liquid i.e. Oleic acid) fatty acids.
- In plants they are abundant in fruits and seeds.

Characters of Fixed oils and Fats:

- 1- lighter than water, greasy in touch, leave permanent stains on paper.
- 2- Insoluble in water and alcohols except castor oil (soluble in alcohol).
- 3- Soluble in ether, chloroform and petroleum ether.
- 4- Stain red with Sudan III.
- 5- Easily saponified by aqueous solution of KOH yielding glycerol and salt of acids (soaps).
- 6- Fixed oils are liquids at normal temperature (glycerides of unsaturated fatty acid).
- 7- Fats are solids or semisolid glycerides of saturated fatty acids.

- Uses of Fixed oils and Fats:

- 1- Nutritive use.**
- 2- Pharmaceutically as solvents in intramuscular injections.**
- 3- Preparation of soaps, Liniments, Plasters.**
- 4- Laxatives, demulcents and emollients.**

2- Secondary metabolites:

The living plant is nature's laboratory. There In food materials or metabolites are synthesized. Other materials are also synthesized by plants. These secondary metabolites are usually physiologically active and constitute what are known as "active constituents" of drugs. Pharmacognosy are interested in these active secondary metabolites as they are the bases for the identification of plants and, as well as the curing agents for human being diseases. These secondary metabolites consist of several classes of various organic compounds viz, glycosides, alkaloids, volatile oils, resins.... etc.

I – Crystals**• i- Calcium oxalate:**

- produced in plant tissues as detoxifying products for the toxic by product oxalic acid.
- exhibit certain diagnostic shapes which can be considered as key elements for the natural drugs containing them.
- Forms of Calcium oxalate Crystals:
 - a- Prisms:** - Quillaia bark, Hyoscyamus leaf, Liquorice.
 - b- Cluster:** - Rhubarb, Stramonium, Clove.
 - c- Rosette:** - Family: Umbelliferae.
 - d- Acicular or Needle-shaped crystals (raphides):** Squill bulbs.

e- Micro-crystals or sandy crystals: Belladonna leaf (microsphenoidal)

- Cinchona bark (microprismatic)
- **Special Arrangements of Calcium oxalate:**

a- Crystal sheath:

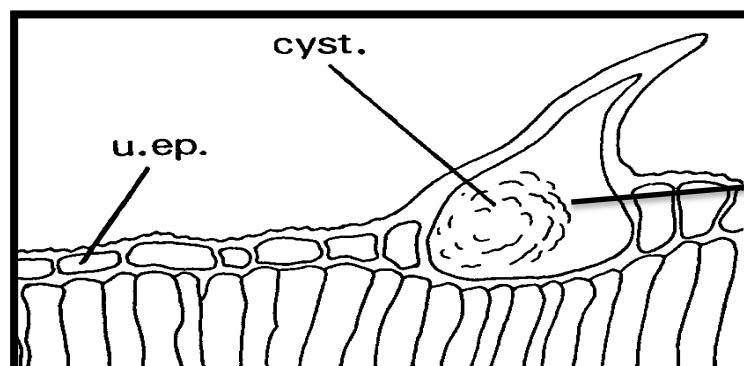
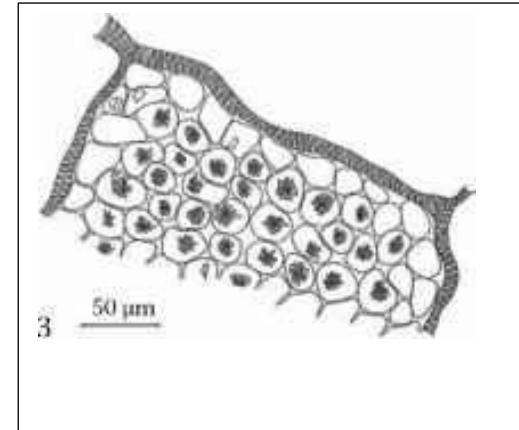
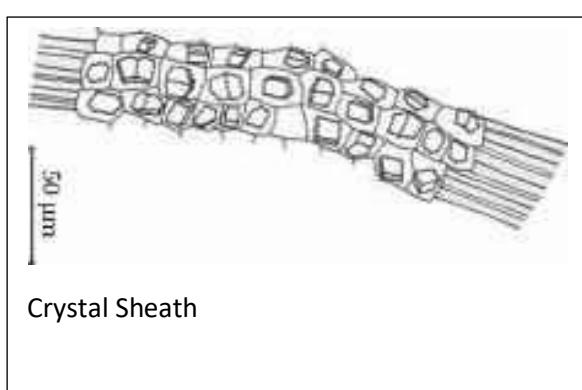
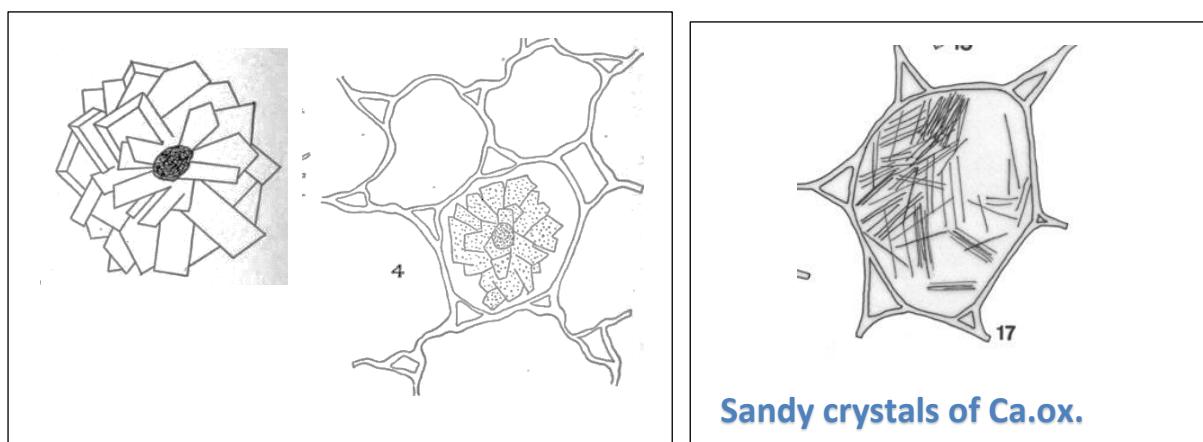
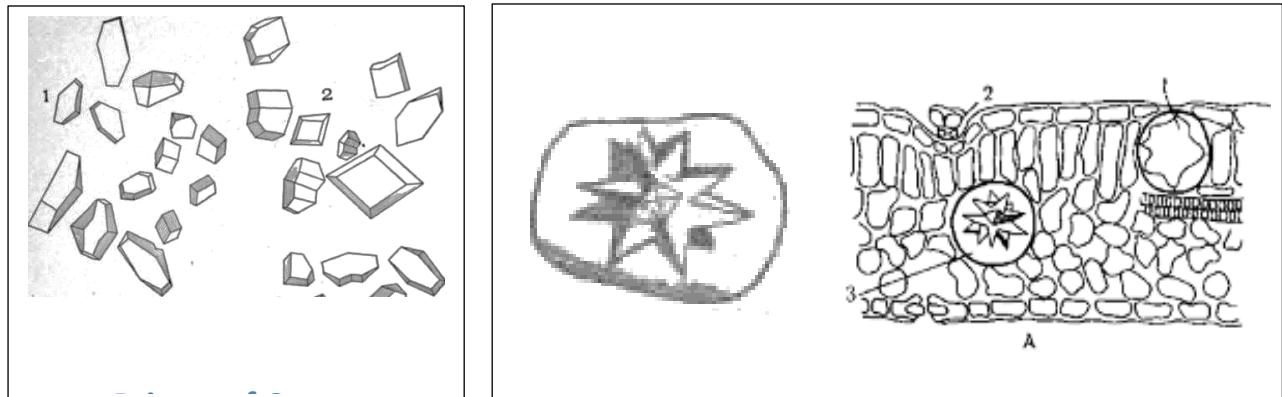
- Group of fibers sheathed with parenchyma membrane, each cell containing one calcium oxalate prism. i.e. Liquorice.

b- Crystal layer:

c- Group of parenchyma cells, each cell containing calcium oxalate cluster, i.e. Stramonium

• **ii- Calcium carbonate:**

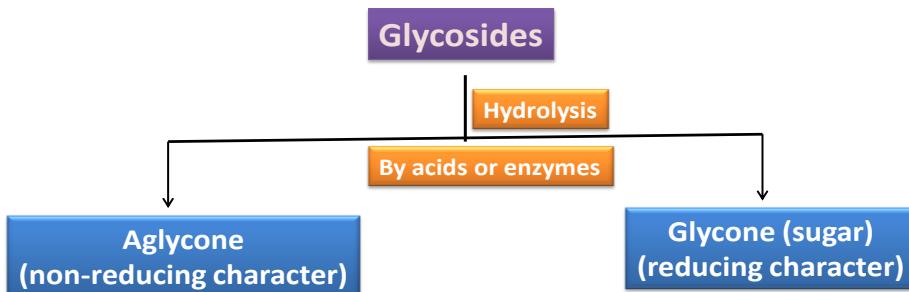
- embedded in or incrusted in the cell wall in the form of concentrations found on outgrowths of the cell wall and termed **cystoliths**.
- i.e. Cannabis
- **Special chemical tests:**
- CaCO_3 dissolves with effervescence in dilute acids.
- i.e. dil. HCl






• **iii- Hisperidin and Diosmin:**

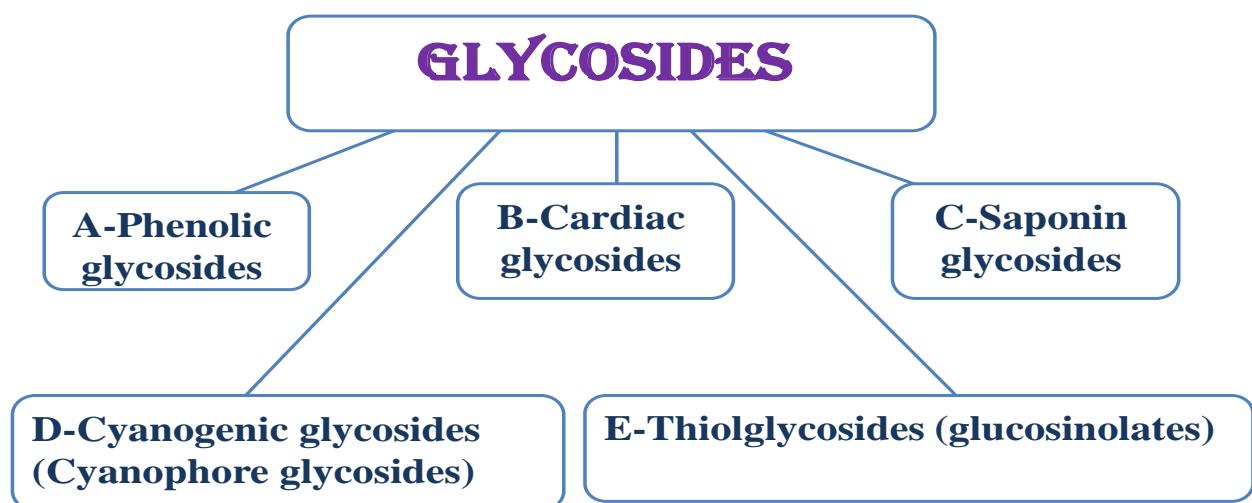
- Crystalline masses of diosmin are present in the epidermal cells of Buchu leaves.
- These crystals are insoluble in organic solvents but soluble in KOH.

• **iv- Silica:**

- Occurs as incrustation on cell walls or masses in the interior of cells.


- i.e. Silica nodules can be found in the sclerenchyma layer of cardamom seeds.

II- Glycosides:


Glycosides:

- are non-reducing substances.
- Bitter tasting solids.
- Soluble in water and alcohol.

- Glycosides are crystalline (sometimes amorphous) ion reducing organic compounds. They are hemi-acetals formed by condensation of a non-sugar part (**aglycone or genin**) to one or more sugar molecule (**glycone**). The condensation may occur by loss of water, and formation of C-O-C ether, C-C or C-N-C-C-S-C glycoside linkages. The glycosides formed by condensation of -OH group of the sugar with the -OH of the aglycon are always of the beta type due to beta orientation of Cl-OH group of the sugar molecule). These beta glycosides are usually hydrolyzed by beta enzymes e.g. emulsion, aqueous acids or aqueous alkalis. The C-glycosides resist the above-mentioned method of hydrolysis, but sugar can be liberated

- By oxidative hydrolysis process, in which ferric ions are added to the aqueous acid solution to promote oxidative cleavage of the sugar from the aglycone part.
- The N- and S- glycosides are readily hydrolyzed by enzymes or acids to give nitrogenous and sulphurated aglycones. The aglycones are represented by various classes of organic hydroxylated compounds.

- So, glycosides are classified according to the type of aglycone present in to the following groups:

A) Phenolic glycosides:

They produce Phenolic aglycones when subjected to hydrolytic processes. The phenolic, aglycones may be:

1- Hydroquinones:

e.g. glycoside arbutin of *Uva- ursi*, which gives by hydrolysis hydroquinone and glucose.

2- Flavonoids:

- The aglycone consists of a flavone selection (hydroxylated benzopyrone nucleus to which is attached on aromatic benzene nucleus at C-2 e.g. diosmin glycoside of Buchu which yeild the flavonoid diosmetin, rhamnose, and glucose by hydrolysis.
- The flavonone glycosides contains the dihydro- flavone glycone e.g. Hesperidin glycoside of *Citrus* species which contains the aglycon hesperelin.
- The flavonal glycosides contain the 3-hydroxy flavones aglycones e.g. Rutin of *Ruta graveolens* yield quercetin, rhamnose and glucose by hydrolysis.
- The flavonoid glycosides are often yellow compounds (hence the name (flavus – yellow), they dissolve in aqueous alkali hydroxides to give canary – yellow colours. They are widely distributed in many families, e.g. Rutaceae, Polygonaceae, Fabaceae, Apiaceae and Asteraceae.

3- Anthocyanins:

They are structurally related to flavonoids and are coloured. They constitute the pigment of the coloured petals of flowers. Their colour changes are affected by the pH of the cell sap and range from red-violet to blue (hence the name derived from antho = flower, cyanos = blue). The most common anthocyanins are; Cyanin in Red rose petals.

4- Anthraquinones:

The aglycones are di, tri or tetra hydroxy methyl anthraquinone derivatives. These glycosides have laxative and purgative actions; they give positive Borntrager's reaction. The aglycones are linked to the sugars by an ether-linkage e.g. frangula emodin of Frangula bark. Many anthraquinone glycosides are C-glycocides as the aglycones are linked to the sugars via C-C linkage e.g. barbaloin of Aloes.

- Several glycosides contain the anthraquinone aglycones linked to the sugars by both ether and C-glycoside linkages. e.g. Cascareoides of Cascara bark. The dianthraquinone glycosides contains an aglycone consisting of two

molecules of anthraquinones linked by C₁₀-C₉ linkage, to which the sugars are attached. e.g. Dianthrone glycosides of Senna; sennosides.

5- Tannins:

Tannins are amorphous, water-soluble glycosides. Their aqueous solutions are turbid, astringent. They are used as haemostatic to stop bleeding, and to check diarrhea. They are classified into two types:

a. Hydrolysable tannins or pyrogallol tannins: they produce pyrogallol by pyrolysis. The aqueous solution of this type of glycosides readily precipitates protein, forming hide, and give blue black colour or precipitate with ferric chloride solution e.g. tannins of Galls.

b. Condensed tannins or Catechins: they are derivatives of catechin, give catechol by pyrolysis. Their aqueous solutions do not precipitate protein, give a green black colour or precipitate with ferric chloride solution. They darken by exposure to air due to oxidation and conversion to phlobaphenes. e.g. tannins of tea.

6- Stilbenes:

These glycosides contain stilbene derivatives as an aglycones e.g. Rhaponticin glycoside of Rhapontic Rhubarb.

7- Coumarins:

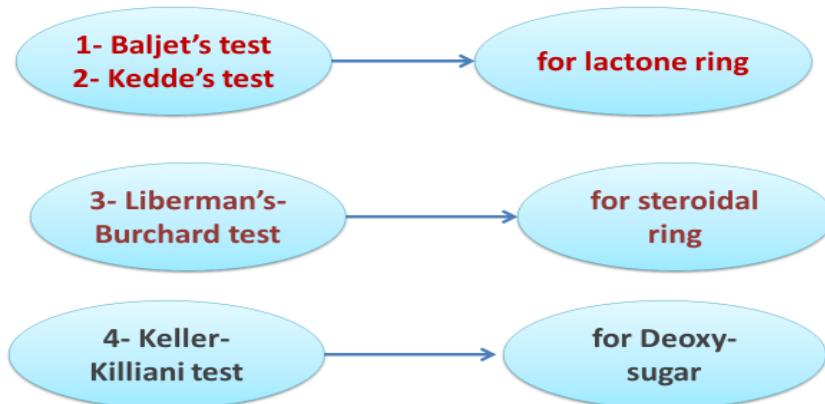
The glycosides of this group were recently isolated from plants e.g. daphnin, from Daphne mezereum, phlorrizin from root bark of Apple tree, scopolin from Belladonna herb, and

skinning from Japanese star anise fruits. They produce coumarins, oxycoumarins by hydrolysis, e.g. skinning which give 8 hydroxy coumarins (Umbelliferone).

8- Salicin, populin, Coniferin:

In this group, the aglycone contains an alcohol -OH group in addition to the phenolic -OH group. e.g. Salicin glycoside of Salix bark.

9- Indole:


The aglycone is a hydroxyl indole derivative e.g. indicant glycoside of Indigo plant.

B- Cardiac glycosides

- The aglycone is a specific steroidal nucleus to which is attached an unsaturated lactone ring. This structure has a specific effect on cardiac muscle, increasing their tone, excitability and contractility, are used to treat auricular fibrillation and cardiac arrhythmia. So, they are called **cardiac glycosides**.
- They are also characterized by the presence of 2-deoxy sugars, pentoses and methyl pentoses in their sugar moieties.
- According to the lactone ring, cardiac glycosides are subdivided into:
 - 1- Cardenolides, when the lactone is 5-membered ring e.g. cardenolides of Digitalis,
 - 2- Bufadienolides, when the lactone is 6- membered ring e.g. bufadienolides of Squill.

- **Uses:**
 - heart tonics (cardiotonics).
 - treatment of auricular fibrillation
 - treatment of cardiac arrhythmia.

- **Chemical tests of cardiac glycosides:**

C- Saponin glycosides

-In other group of glycosides, the aglycone is a sterol attached to it a spite s tone group. These glycosides are water soluble, and their aqueous solutions produce persistent honeycomb like froth on shaking. So are called **saponins** (soap like).

- They can reduce the surface tension of water (so produce foam) and are strongly haemolytic to red blood corpuscles so are not used for parenteral administration. e.g. Ruscus, Dioscorea, Digitalis saponins. In the steroid glycoalkaloids, the aglycone is similar to the saponin, but with N-atom in the place of O-atom of the hexa-cyclic ring of the spirostane group.
- These glycosides are also hemolytic, but the foam production is very low. They are particularly abundant in families; Liliace.ee and Solanaceae e.g. Solanin in Solanum, Tomato in Tomato and Rubervine in veratrum.
- The triterpenoid aglycones occur in the triterpenoid saponin glycosides e.g. Quillaia, Polygala and Ginseng saponins.

D - Cyanophoric or Cyanogenic Glycosides

- Those glycosides yield hydrocyanic acid by hydrolysis e.g. Linamarin of Linseed.

- They yield HCN (hydrogen cyanide) as one of the products of hydrolysis.
- Detected in plants by the **HCN** reaction with **sodium picrate paper** (yellow) which changes to the **red color** due to the formation of sodium iso-picramate, i.e. Linamarin in Linseed.

E - Isothiocyanate Glycosides

They occur in many cruciferous seeds, and give isothiocyanate derivatives by hydrolysis, e.g. Sinigrin of black mustard seeds, give allyl isothiocyanate, (mustard irritant gas).

E - Saponin glycosides

They were isolated for the first time from plants belonging to family Iridaceae e.g. Picrocrocin of Crocus. The aglycones are very sensitive to Oxidation by atmospheric

oxygen, unstable, so it was very difficult to isolate them in the pure state unless under very careful protecting conditions e.g. gentiopicrin of Gentiana species.

III- Alkaloids:

Alkaloids are alkali-like, organic, nitrogenous (nitrogen atom usually in a heterocyclic ring, secondary or tertiary), biological compounds, and possess a marked physiological action on the body, and some are highly tonic. Alkaloids form water soluble acid salts, and precipitated from this acid solution by Mayer's, Wagner's, Dragendorff's, and tannic acid solutions.

- Their physiological actions vary widely, some like morphine are narcotic, analgesic, others like caffeine are C.N.S. stimulants, some like atropine are mydriatics, others like physostigmine are myotic.
- Alkaloids have different structural formulae e.g. phenylethyIamines as ephedrine of Ephedrine. Pyrrolidines as nicotine of Tobacco Pyrrolzidines as

hellotrine of *Heliotropum*, Quinollizidines e.g. deoxy nupharidine in *Nuphar* species. Tropane esters e.g. L hyoscyamine of Solanaceous drugs. Quinoline group as quinine of *Cinchona* bark Phenanthrene group e.g. morphine of Opium, Indole alkaloids e.g. reserpine in *Rauwolfia*, Bis indoles e.g. vinblastine of *Catharanthus roseus*.

- Imidazoles e.g. pilocarpine of *Jaborandi*. Diterpenoids e.g. Aconitine of Aconite. Tropolones e.g. colchicine off *Colchicum*, Purine bases e.g. caffeine of Tea.

IV- Volatile oils:

- They are odoriferous principles found in various parts of plants. They are volatile with steam, and usually immiscible with water, and are also known as essential oils or etherial oils.
- They differ from fixed oils in that they do not leave a permanent stain on filter paper, and do not consist of glyceryl esters of fatty acids, as do fixed oils. In chemical constitution, they consist of mono- di-, sesquiterpene compounds in **a homogenous mixture, they vary widely and are mixtures in which almost any type of organic compounds (hydrocarbons, alcohols, ketones, aldehydes, ethers) may be found.**

Examples of oil constituents:

Hydrocarbons, limonene, pinene; Alcohols; geraniol, linalol, citronellol, benzyl alcohol, menthol, Phenols, carvacrol, thymol, anethol, eugenol, apeol; Aldehydes, citral, benzaldehyde, salicylic aldehyde, cinnamic aldehyde, vanillin, Ketones, pulegone, menthone, carvone, fenchone; Esters. Bornyl acetate,

PeroHides, ascaridole; Sulphurated compounds allylisothiocyanate. The most commonly occurring compounds, however, are terpenes or their derivatives.

- Volatile oils usually occur in specialized secretory structures such as glandular hairs or lysogenous or schizolysogenous passages, and these in turn are often localized in only one part of the plant. Many drugs are used because of their volatile oil content and in many cases the oils are separated by steam distillation. Many volatile oil drugs find extensive use as spices (Pepper, Clove, and Sage). The oils or extracts of the drugs are used as beside some with therapeutic action and used in perfumery. Examples of drugs rich in volatile oil are Mentha, Buchu, Ruta, Eucalyptus, Orange, Lemon, Rose, Anise, Fennel, etc.

V-Balsamic Resin:

Resins are more or less solid amorphous products of a complex chemical nature. They are usually formed in schizogenous or in shizolysogenous ducts" or cavities and are end - products of metabolism. Physically, they are usually hard, transparent or translucent and upon heating soften and finally melt. Chemically, they are complex mixtures of resin acids, resin alcohol, resinotannols, esters and resenes. They are insoluble in water, but soluble in alcohol and are reprecipitated by addition of water. Some investigators believe them to be oxidation products of the terpenes has been erroneously applied to some oleo-resins in such terminology as Canada balsam, balsam of copaiba etc. this error has occasionally led to some confusion.

VI- Enzymes:

Enzymes are organic bio-catalysts produced by living cells. They make possible most of the chemical reactions which make up life processes. Their chemical constitution is believed to be proteins. Since they may be recovered and

partially purified, it would seem that they be utilized as therapeutic agents, as well as to control certain chemical reactions in

Industry, Pepsin, Pancreatin and Papain are employed therapeutically as digestants, while Zymase and Rennin find extensive commercial use in the fermentation and cheese industries.

VII- Vitamins:

Vitamins are organic compounds necessary to the normal growth and maintenance of life in animals, including man. They act somewhat as enzymes during the metabolism of energy yielding food constituents. When the natural supply of vitamins.

VIII- Hormones:

Hormones are active substances secreted by the endocrine glands. They control the growth, development and metabolism of the body in various ways. Like the vitamins, not all vegetables and animal drugs can as yet be classified in the above scheme out as our knowledge of their chemistry increases their place in the arrangement will be established. Since it is these chemical entities in vegetable and animal drugs that exert their physiological action, it would seem that such a chemical arrangement would be useful for the study of these drugs.

IX) Hallucinogens:

These are group of substances that produce hallucination in man when ingested, with the exception of cannabis the hallucinogenic plants contain alkaloids related to nor adrenaline and serotonin. Many of poisonous fungi Produce hallucination, these include:

- *Amanita muscaria* "fly agaric" contains isoxazole alkaloids ibotenic acid and muscimol.
- The Mexican mushrooms "toad stools" e.g. *Psilocybe mexicana*, conocybechanopus, contain hallucinogenic substance psilocybin and psilocin.
- The lysergic acid diethyl amide L.S.O., was prepared using the starting material lysergic acid isolated from ergot, and some convolvulaceous seeds e.g. *Ipomoea tricolor* "morning glory seeds", certain cacti e.g. *Lophophora williamsi* (peyote) is known to contain the hallucinogenic principals: mescaline, peytonine.
- The Indian hemp "cannabis" is the most ancient and the most famous hallucinogenic plant; it contains potent principal tetra hydro cannabinol.
- These Hallucinogenic plants have been frequently used by man within a religious context. But now they are widely used by young students, artists, writers, and workers. This high degree of abuse causes serious dangerous actions.

X) Natural insecticides:

They exhibit a variable chemical constitution, some like epinephrine and thyroxin are simple basic compounds and others like the pituitary and insulin are peptide or peptone compounds, while still other like sex hormones and those of the adrenal cortex are related to the sterols. Hormones are valuable therapeutics agents in treating conditions arising because of their natural deficiency.

XI) Antibiotics:

Certain moulds and fungi synthesize compounds that are bacteriostatic and have been found exceedingly useful in treating diseases caused by bacteria and microorganisms, representatives of this group are penicillins, tetracyclines and polymixins.

XII) Sterols:

Sterols should probably be classified next to the fixed oils and fats since they occur commonly in the un saponifiable portions of fixed oils and fats. They have, however, been placed last since many compounds classified in other groups are related to them. Among these are some of the vitamins (vitamin D), the estrogens, the adrenal cortex hormones, the digitalis aglycones and cholesterol. The sterol nucleus is therefore an important one in the chemistry of drugs. They are various chemical compounds, isolated from plants, insects, fungi, bacteria and possess insecticidal power. Some of them are extensively used, being much safer, cheaper, and more available than the synthetic insecticide. Others are now the parent compounds for the synthesis of more potent, highly effective insecticides e.g. pyrethrins are used for the synthesis of more potent tetramethrin, allethrin and rosrethrin. Natural insecticides differ in structure, mode of action, from the synthetic ones, but they are also effective.

XIII) Plant produced- insecticides:

1- Pyrethroids:

Pyrethroids are groups of ester compounds obtained from the flower heads of insect flower. They consist of pyrethrin I, II, cinerin I, II and jasmolin I, II. They are viscous liquids with a rapid knock down effect on insects. They are used as contact insecticides for the housefly's mosquitoes...etc.

2- Nicotinoids:

Nicotine = Nicocide = Ten dust. Nicotine is the pungent liquid alkaloid from Tobacco leaves it is a contact, fumigant, stomach poison to the insect, producing excitation, convulsion and paralysis through inhibitory action on ganglia and neuromuscular block.

3- Rotenoids:

Rotenone= Derrin, Niculine, Tubatoxin. It is isolated from roots of *Derris* species, *Lonchocarpus* species and *Pachyrrhizus erosus* seeds. it is a very potent insecticide, inhibiting respiratory processes, but it is toxic to mammals.

D- Fungi insecticides:

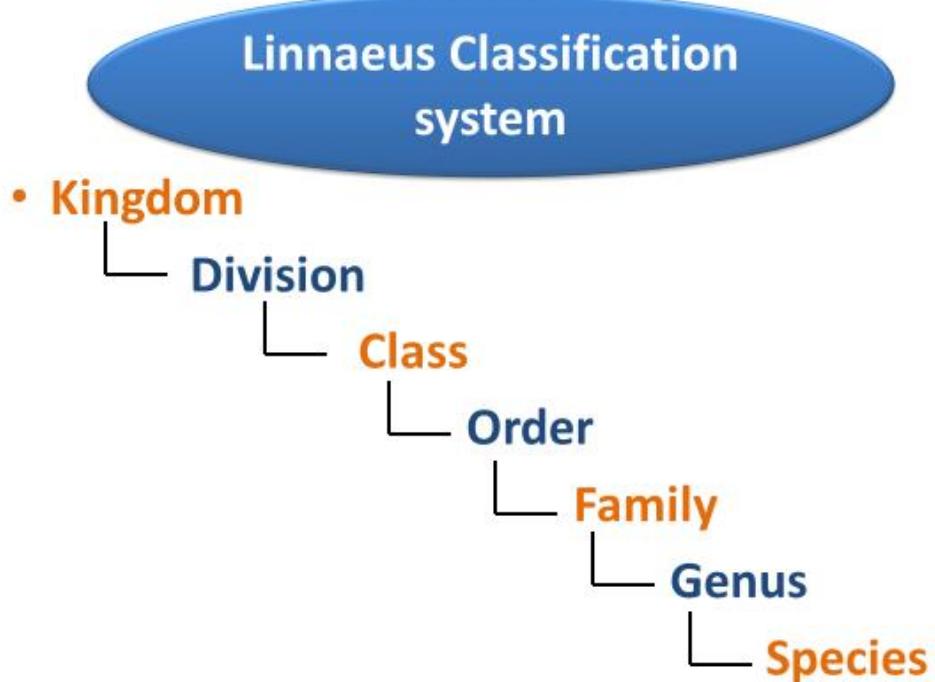
Some fungi produce insecticidal principals e.g. *Streptomyces* produces piericidin A, B which are active against house fly, silkworm, red spiders, mites, but are tonic to mammals.

E-Insect antifeedants:

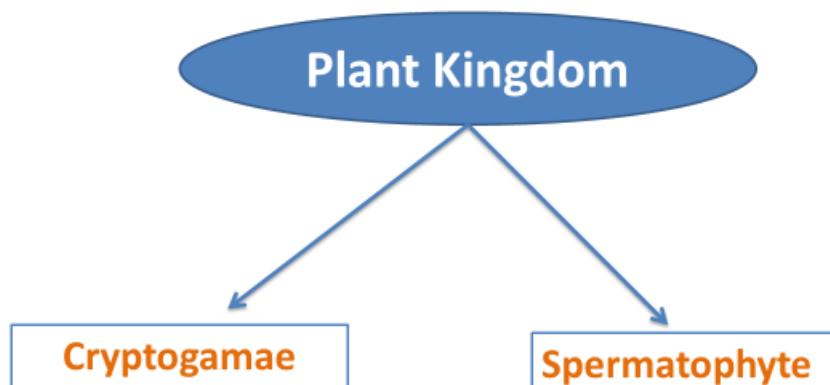
These are plant constituents that cause the reduction of feeding desire of insect larvae when ingested in very minute quantities 0.05 mg/liter, e.g. azadirachtin produced in the kernels of Neem plant *Azadirachta indica*. It is safe to human beings, used to control locusts and larvae of webbing cloth moths.

XIV- Allergens:

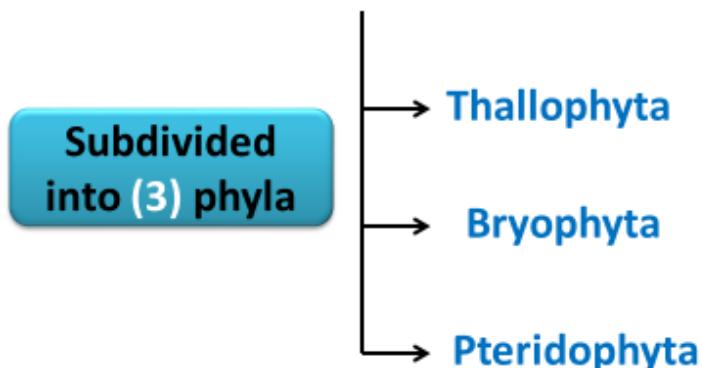
A number of plants give rise to allergic reactions in certain individuals. Once a person is exposed to the allergen, an antigen antibody reaction occurs resulting in the liberation of histamine and histamine like compounds which in turn cause the allergic symptoms. The allergens are:


Pollen: The pollen grains of flowers are suspended in air, may cause allergic reactions e.g. pollens of Timothy (*Phloem pratensis*) Codes foot (*Dactylis glomerata*), Percunial Rye (*loliu perenene*), plantain (*Plantago* species) Mug wort (*Ambrosia* species). Fungal spores also cause allergies. Some plants e.g. *Pinus* species contain contact allergens, producing severe dermatitis. These allergens are contained in the cell sap.

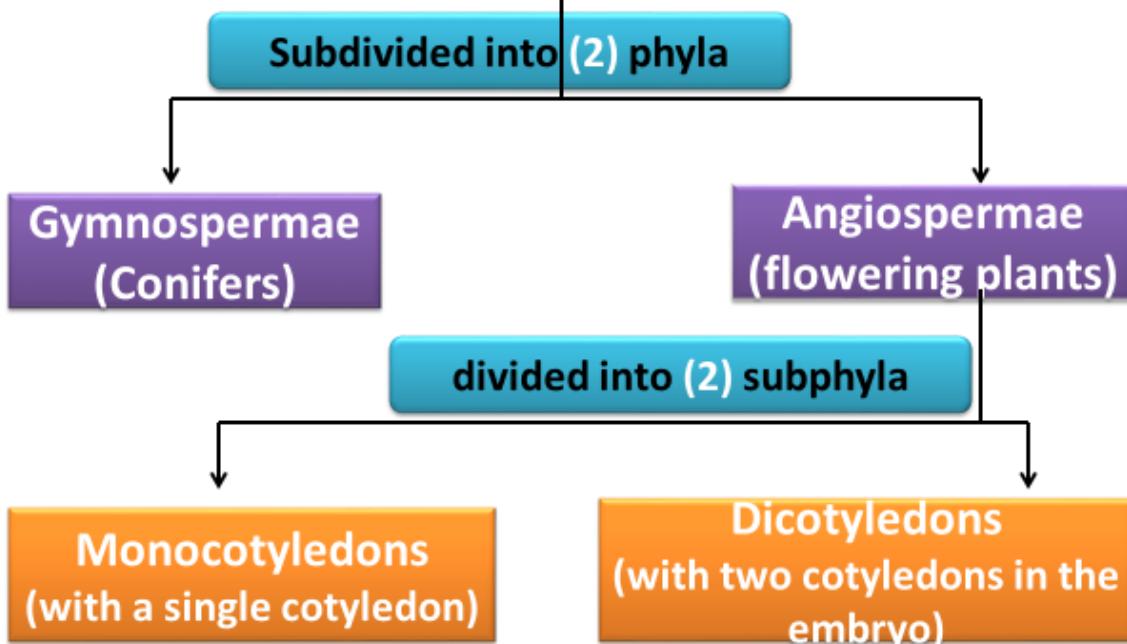
Plant Taxonomy


Plant Taxonomy

- **Introduction and Definitions:**
 - Taxonomy is the science of classification and identification of plants,
 - i.e. **grouping of plants with similar characteristics**
 - Flower shape
 - Plant form
 - DNA
- The main objective of taxonomy is **the proper use of scientific names** is necessary because the same common name is used for different plants in different areas of the world.
- Scientific names are used to avoid confusion concerning the names of plants as scientific names of plants are expressed in Latin because it is an international language and were used by early scholars to express plant names.



Binomial Classification


- The first word is the genus and the second is the species.
- **Genus:** is a group of plants that have more in common with each other than they have with the members of any other genus.
- **Species:** is a group of plants that are alike in almost every feature and consistently produce like plants.

- 1- The **Cryptogamae** (flower-less) plants with hidden sexual organs

- 2- The **Spermatophyte** or **Phanerogams** (the flowering plants).

Cryptogamae

- It includes the flowerless plants with hidden sex organs.

Examples:

1- Mosses: share the following characters:

- a-** Simple plants
- b-** Simple stems and leaves
- c-** having no true roots, no vascular tissues hence no transport.
- d-** Spores from capsules help in wind-dispersion.

2- Ferns: share the following characters:

- a-** Ferns have roots, feathery leaves and underground stems.
- b-** mostly grow in dark and damp places.
- c-** have vascular tissues for both transport and support purposes.
- d-** have spore producing organs on the underside of leaves for reproduction.

Gymnospermae

General characteristics of Gymnosperms:

- a-** The plants produce naked seeds in female cones where cones with reproductive structures.
- b-** grow in dry places and exist as tall evergreen trees.
- c-** They possess roots, woody stems, needle-shaped leaves and vascular tissues for transport.

Angiospermae

General characteristics of Angiosperms:

- a- They are able to grow in a variety of habitats.
- b- They have very developed conduction tissues.
i.e. the vascular bundles of Monocotyledons are arranged in cross section while in Dicotyledons they are arranged as a ring.
- c- The root system of Angiosperms is very complex.
- d- fertilization take place by pollination which include insect pollination, wind pollination....etc

Main differences between Mono- and Di-cotyledons

Point of comparison	Monocotyledons	Dicotyledons
Flower Plant	Usually in threes	Usually in fours or fives
Pollen grains	Have one furrow or pore	Have three furrows or pores
Cotyledons	One	Two
Leaf venation	Parallel	Reticulate (net-like)
Vascular bundle	Scattered	In a ring
Secondary growth	Usually, absent	Usually, present

Dicotyledons

- They are herbs, shrubs or trees in which their seeds have two cotyledons.
- The leaves are usually reticulate veined, and the typical stem structure is a ring of open vascular bundles.
- Flowers are usually pentamerous or tetramerous may be unisexual (e.g. Salicaceae) but are more usually bisexual.
- The perianth may or may not be differentiated into sepals and petals.
- **Dicotyledons are classified into two sub-classes:**
 - 1- Archichlamydeae.
 - 2- Sympetalae.
- **Archichlamydeae** are further divided into 37 orders and about 226 families.
- **Sympetalae** are further divided into 11 orders and about 63 families.
- The names of the **orders** terminate in “-ales”
- **Suborders** in “-neae”

- Families usually in “-aceae”
- And sometimes sub-families ending in “-oideae”

Old family name	New family name
Leguminosae	Fabaceae
Cruciferae	Brassicaceae
Umbelliferae	Apiaceae
Amaryllidaceae	Alliaceae
Compositae	Asteraceae
Graminae	Poaceae
Labiatae	Lamiaceae

Sub-class Archichlamydeae

1- Family Cannabinaceae

- **General characters:**
 - a-** The plants are aromatic resinous herbs, carrying palmately divided stipulate leaves with reticulate-pinnate venation.
 - b-** Flowers are unisexual, dioecious, male flowers show perianth of five segments and androecium of five free stamens while female flowers have small cup like perianth, unilocular ovary while a curved pendulous ovule and two stigmas.
 - c-** Fruit is a nut containing single seed with coiled embryo.
- d-** Anatomically, the family is characterized by:
 - 1- Laticeferous structures.
 - 2- Glandular (shaggy hairs).
 - 3- Non-glandular trichomes (cystolithic hair).

2- Family Leguminosae (Fabaceae)

- It is the third largest family of flowering plants with more than 18,000 species described.

- It is surpassed in size only by the orchid family (Orchidaceae) with about 20,000 species and the sunflower family (Asteraceae) with about 24,000 species.

General characters of family Leguminosae:

a- The plants are herbs, shrubs or trees.

b- Leaves are generally alternate usually compound pinnate, petioles are usually provided with pulvinus.

c- Inflorescence are terminal racemes or spikes while the flower is pentamerous, regular or irregular, showing the following characters:

1- Sepals are green with the odd sepal

2- Stamens usually 10 monadelphous or diadelphous.

3- Gynaecium is superior of one carpel, unilocular containing ovules which are amphitropous, anatropous or

Camplotropous.

d- Fruit is a legume or pod which affords the characteristic features of this family.

e- Seeds are usually exalbuminous or with scanty endosperm.

f- the anatomical features of the testa of the seed are characteristic for the family, i.e. the epidermis is formed of palisade –like cells with bar-like thickening and thick cuticle and the sub-epidermal layer is formed of basket cells.

3- Family Rutaceae

Family Rutaceae is commonly known as Citrus family.

General characters:

a- Plants are mainly: **trees** (Citrus), **shrubs** (Buchu) and **rarely herbs** (Ruta).

- Distributed in subtropical and temperate regions especially in warm countries bordering the Mediterranean Sea, South Africa and Australia.

b- Stems are erect, sometimes spiny, carrying simple or compound leaves which show opposite or alternate arrangement and exstipulate or with spiny stipules.

c- Flowers: actinomorphic, pentamerous, hermaphrodite showing the following characters:

- Calyx 5 or 4 sepals.
- Corolla 5 or 4 petals, free or united.
- Gynaecium is superior formed of 5 or 4 carpels rarely more or fewer carpels.
- Styles equal to the number of carpels either united or free at the base and united at the top.
- Nectary discs are present between stamens and ovary.

d- Fruit is a capsule, berry (Citrus) rarely samara.

e- Seeds - albuminous or exalbuminous with straight or bent large embryo.

f- Anatomical features:

- Oil glands are usually schizolysigenous.
- Uniseriate or stellate non-glandular hairs.
- Prisms, clusters and raphides of calcium oxalate.
- The presence of flavonoid glycosides hisperidin and diosmin.

Sub-class Sympetalae

- It is characterized by union of the lower portion of the petals forming a cup, funnel or tube where pollination is usually caused by the aid of insects.

- The ovule generally has one integument.
- The number of whorls is either five or four and on this distinction, it is subdivided into two sub-grades: pentacyclic and tetracyclic.

1- Family Lamiaceae (Labiatae-Mint family)

- **General characters:**

a- Plants are aromatic annual or perennial herbs or shrubs.

b- Stems are square in herbaceous plants.

c- Leaves are simple, opposite decussate and hairy.

d- Anatomically, the family is characterized by:

a. Stomata are diacytic.

b. Covering trichomes are unicellular or uniseriate, simple or branched.

c. Glandular trichomes with unicellular stalk and unicellular or multicellular head usually formed of 8 cells radiating from the stalk.

d. Most plants contain volatile oils.

e- Drugs obtained from this family are exemplified *Ocimum*, *Mentha*, *Thyme*, *Rosemary* and *Lavender*.

2- Family Solanaceae (Night-shade family)

- **General characters:**

1. Plants are herbs, shrubs rarely trees.

2. Simple, entire or lobed usually hairy.

3. Adiantion of leaves to stems is a common character of plants belonging to Solanaceae.

4. Solanaceous plants are rich in alkaloids.

5. Anatomically, the family is characterized by:

- a- Stomata are anisocytic.**
- b- Uniseriate non-glandular trichomes.**
- c- Clavate glandular hairs.**
- d- Perimedullary (intraxylary) phloem.**
- e- Calcium oxalate different crystalline forms.**

3- Family Asteraceae (Compositae)

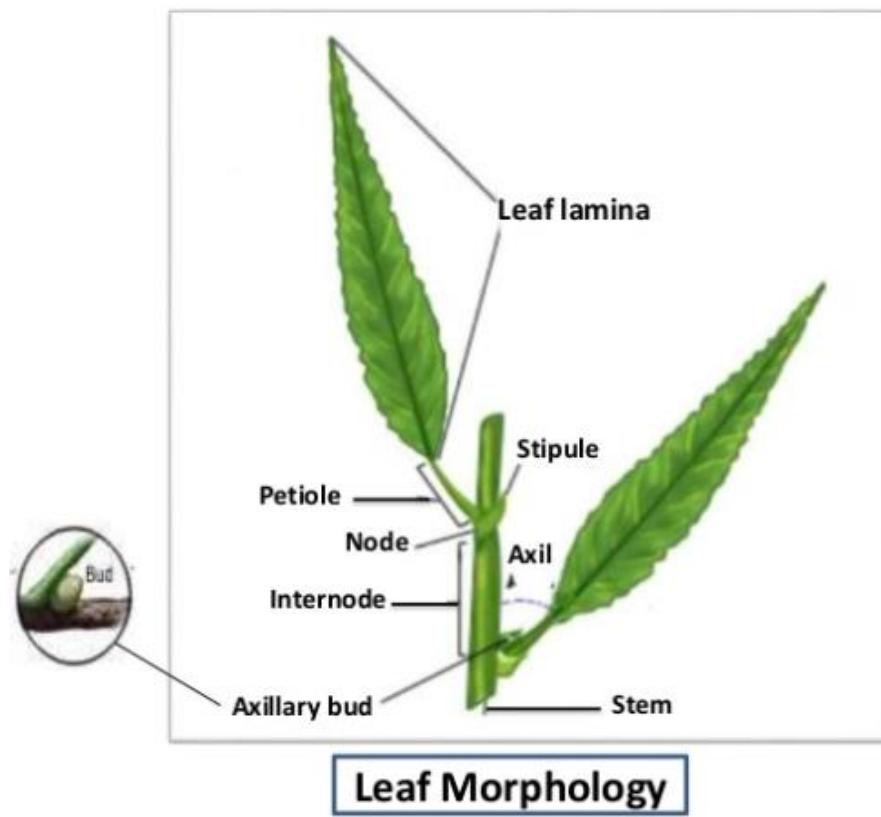
• General characters:

- 1. Plants are annual or perennial herbs.
- 2. The inflorescence “capitulum”.

i.e. The flower is small and known as florets and is of two types:

- Tubular or disc florets.
- Ray or ligulate florets.
- 3- **Anatomically**, the family is characterized by:

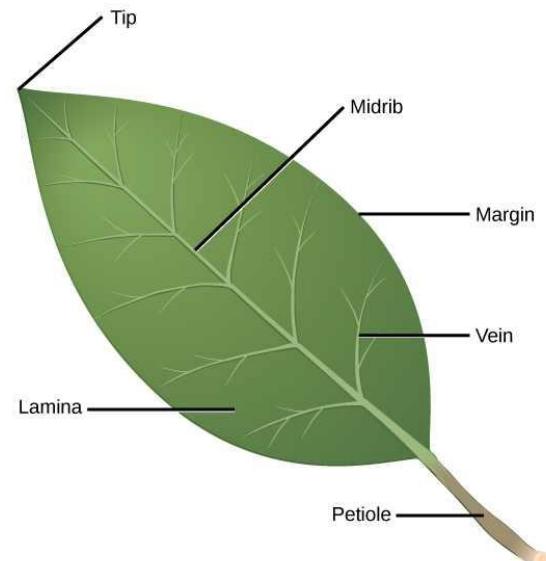
- a- Watery or milky juice.**
- b- Inulin as reserve carbohydrates instead of starch.**
- c- Glandular hairs “Compositeous hair”.**
- d- Non-glandular hairs.**
- e- Internal glands and latticeferous vessels may be present.**


The Leaf **(Latin: Folium)**

Definition:

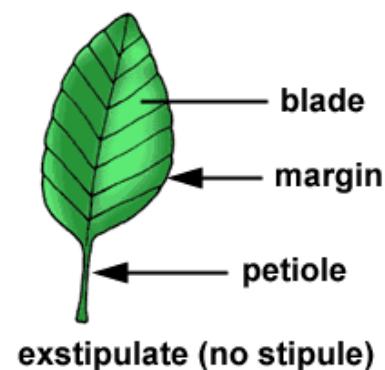
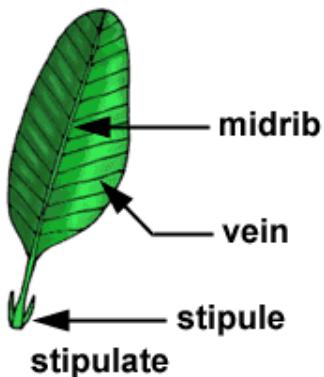
The leaf is a lateral outgrowth or an appendage, of limited growth on the stem from which it differs in structure and organization.

Characters:


- 1- Flattened form.
- 2- Thin texture.
- 3- Presence of chlorophyll.
- 4- Presence of supporting and conducting strands of veins.
- 5- In the angle between the leaf and the stem, it possesses one or more buds or branches.
- 6- It possesses neither nodes nor internodes {c.f. from stem}

Composition of the leaf:

The leaf is composed of three parts:



- 1- The blade or lamina.
- 2- The stalk or petiole.
- 3- The base.

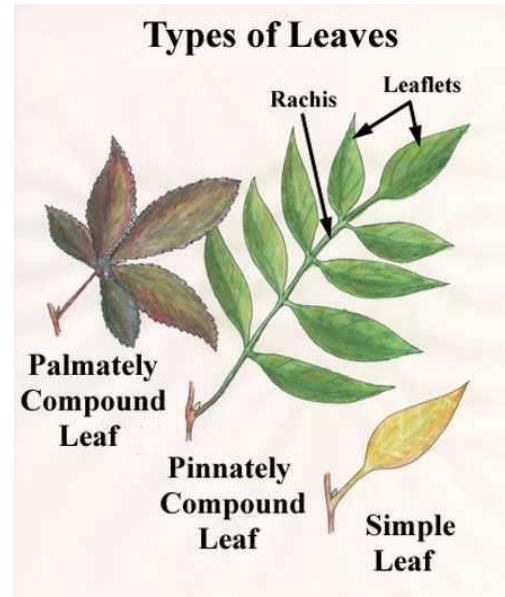
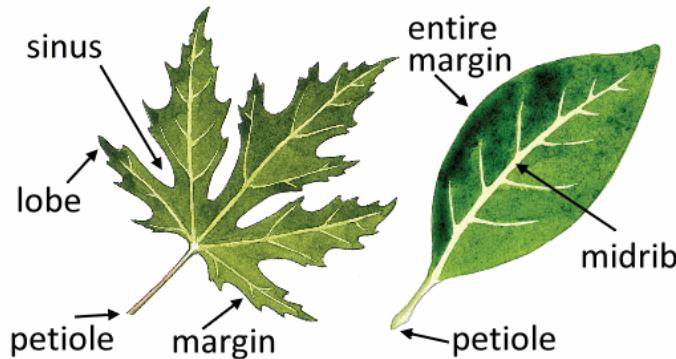
The leaf base:

It is the first part of the leaf by which it is attached to the stem. It has different forms, it may be:

a- **Ex-stipulate:** e.g.: Eucalyptus

b- **Stipulate:** it is classified into

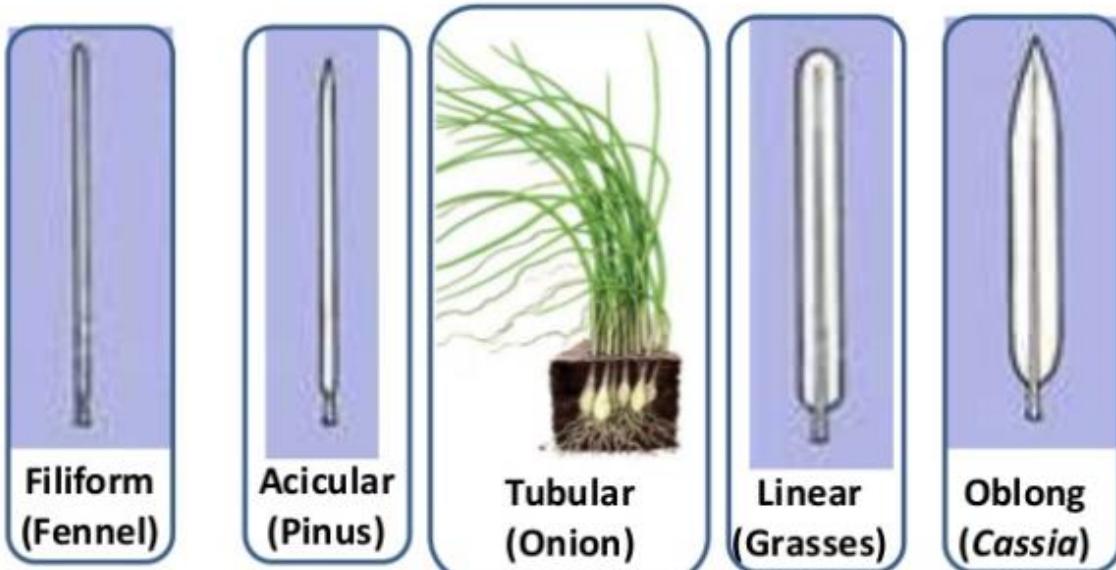
- 1) Hairy stipules
- 2) Ordinary stipules
- 3) Leafy stipules
- 4) Stipuleolate
- 5) Spiny stipules



Hairy stipule

Spiny stipule

The lamina or leaf-blade:

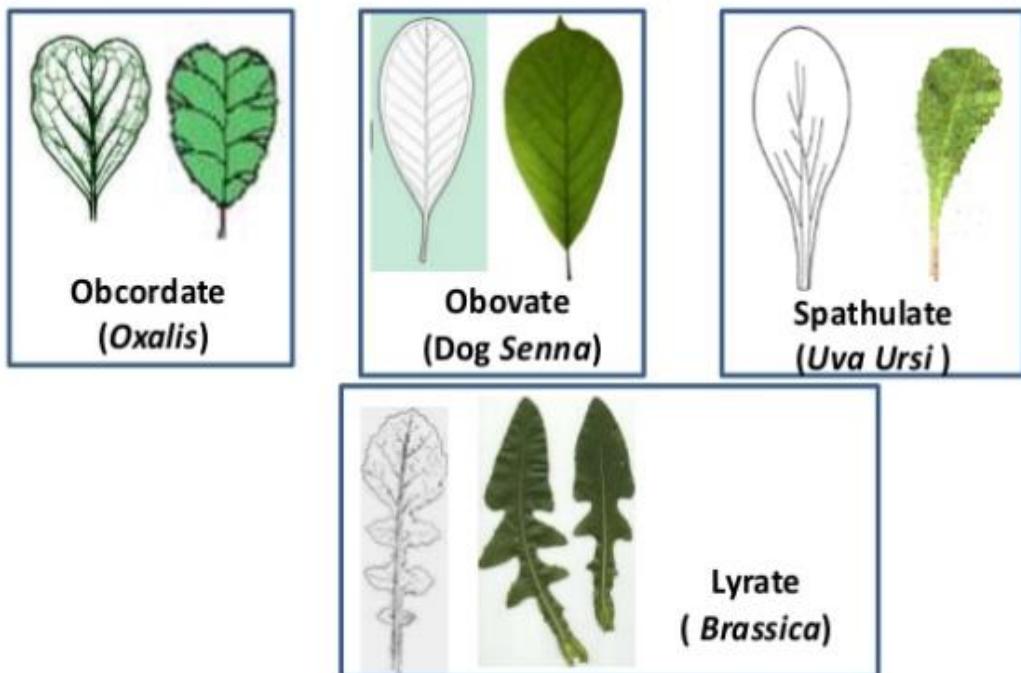
It is usually flattened having a green colour. It consists of a continuous undivided surface {**simple**} or it may cut up into a number of connected lobes {**simple lobed**} or it may be completely segmented into a number of separate leaflets and thus is called **compound**.

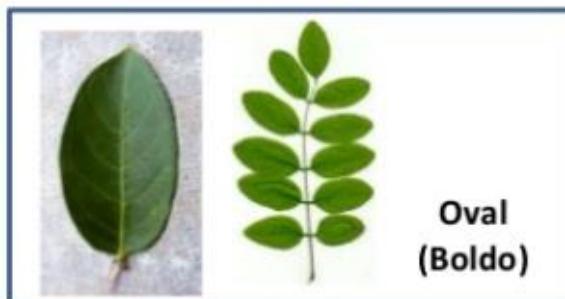
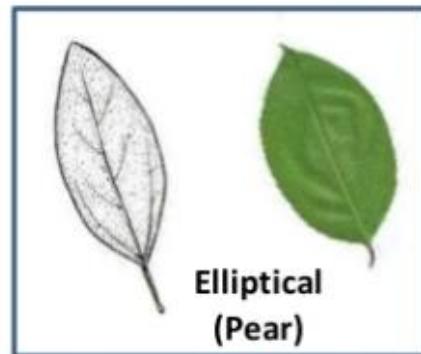
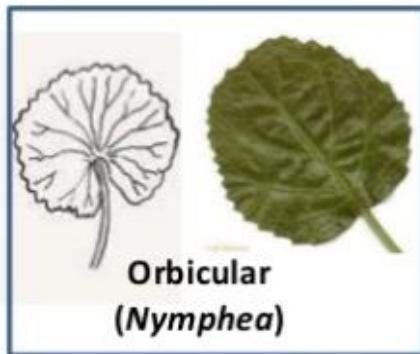


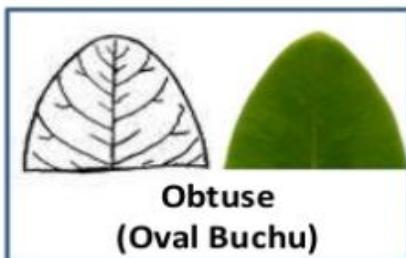
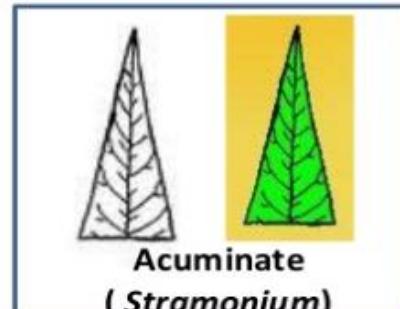
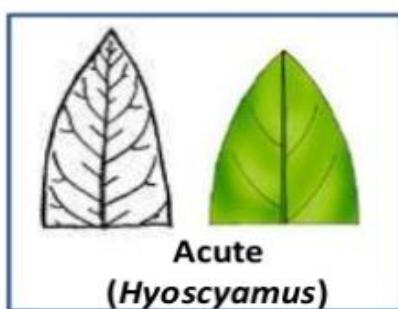
General description of the **lamina** of a simple leaf

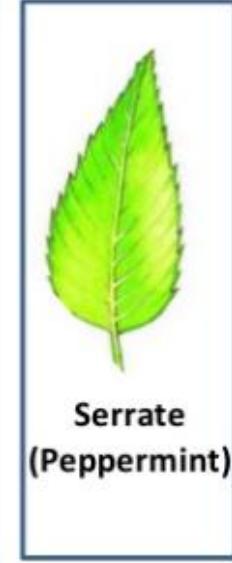
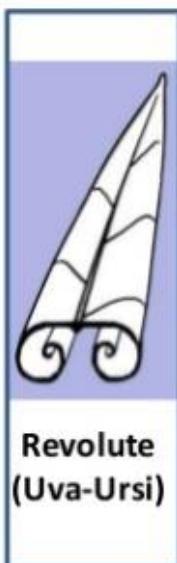

- general outline or shape
- Size
- Apex
- Base
- Margin
- Venation
- Surface
- texture

General outline or shape


- a- when the lamina has nearly the same width:




- b- when the lamina has the widest portion near the base:




- c- when the lamina has the widest portion near the apex:



- d- when the lamina is symmetric or round:

Apex of the leaf

Margin of the leaf

Base of the lamina

Symmetric

Asymmetric

Decurrent

Venation

Parallel

Reticulate

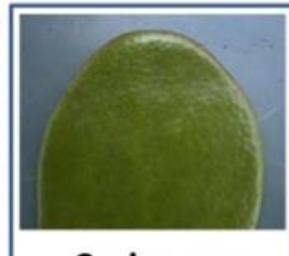
Surface of the lamina

Smooth
(*Uva-Ursi*)

Punctate
(*Buchu*)

Glabrous
(*Coca*)

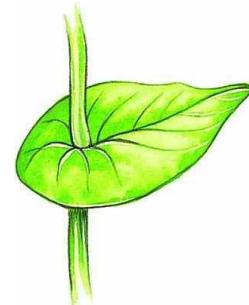
Pubescent
Hairy


Texture of the lamina

Membranous

Papery

Coriaceous


Succulent

Leaf petiole or leaf stalk:

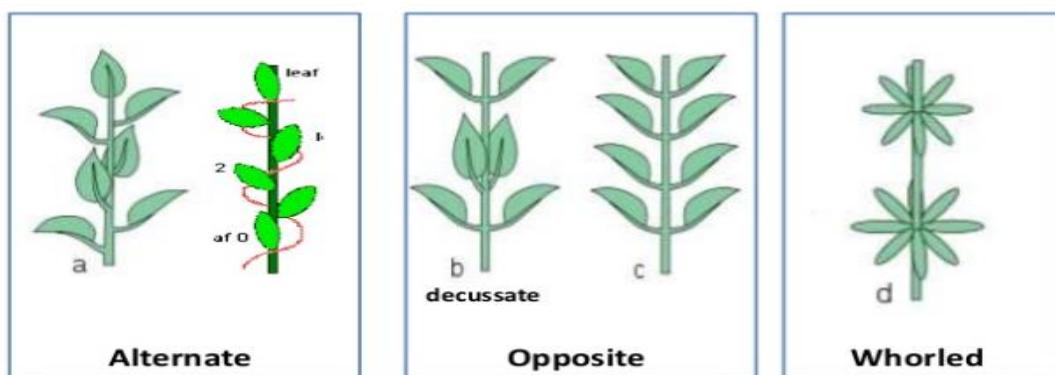
It serves normally to carry lamina away from the stem to place it suitably with respect to light and to perform its functions.

It also conducts material to and from lamina. It is generally rounded on the lower side and grooved on the upper side. The petiole sometimes shows a localized swelling called **pulvinus** either at the apex or at the base. When the petiole is absent it described as **sessile**, but when present it is described as **petiolate**.

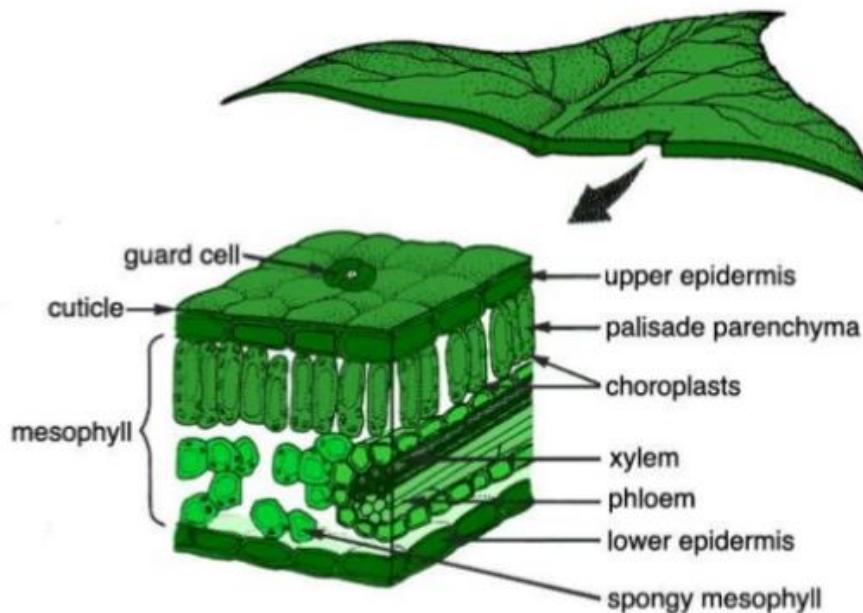
a- **Sessile:** {petiole is absent}

b- **Petiolate:**

- 1) Normal petiole (e.g. Eucalyptus)
- 2) Elongate petiolate: {e.g. Colocasia}
- 3) Climbing petiole.



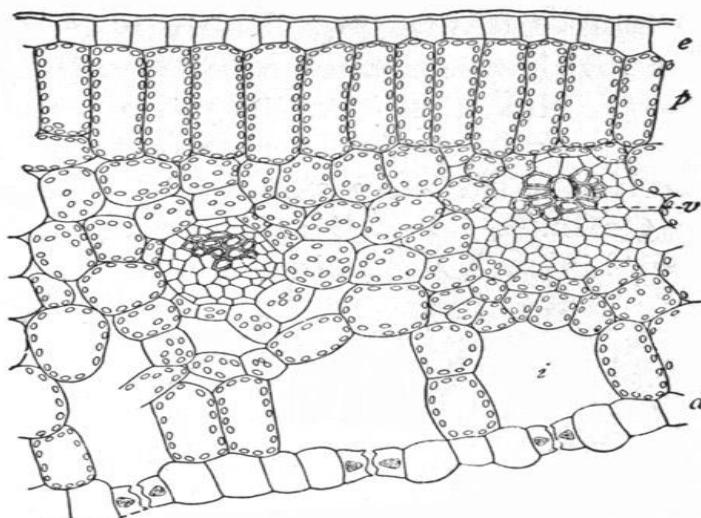
Phyllotaxis


Arrangement of the leaves on the stem:

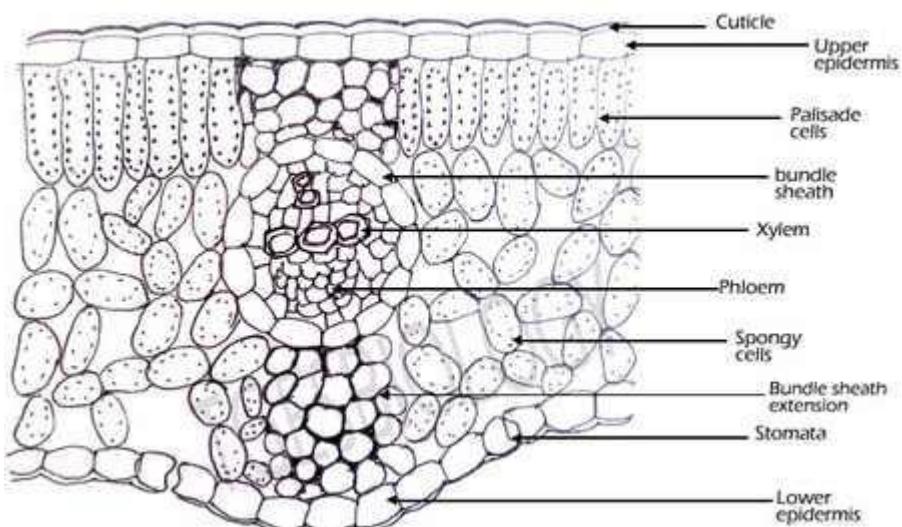
- 1) Alternate: e.g. Eucalyptus.
- 2) Opposite superposed
- 3) Opposite decussate
- 4) Whorled or verticillate

Types of Phyllotaxis

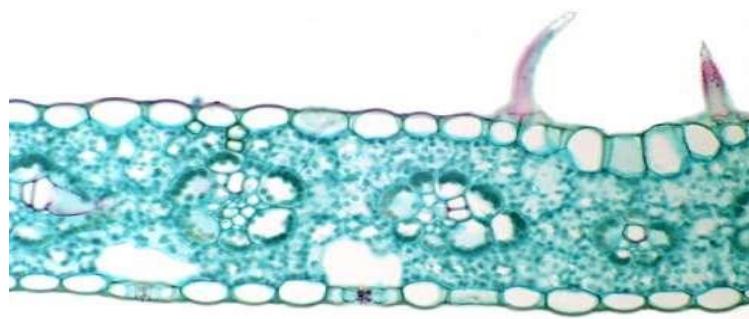
Structure of the leaf (Microscopical characters)



Structure of the lamina:


The ordinary leaf consists of upper and lower epidermis enclosing in between them the green, thin walled ground tissue {mesophyll}, which is traversed by the vascular tissue of the veins.

The midrib and big veins usually accompanied with colourless ground tissue termed cortical tissue.


T.S. in Lamina

T.S. in midrib region

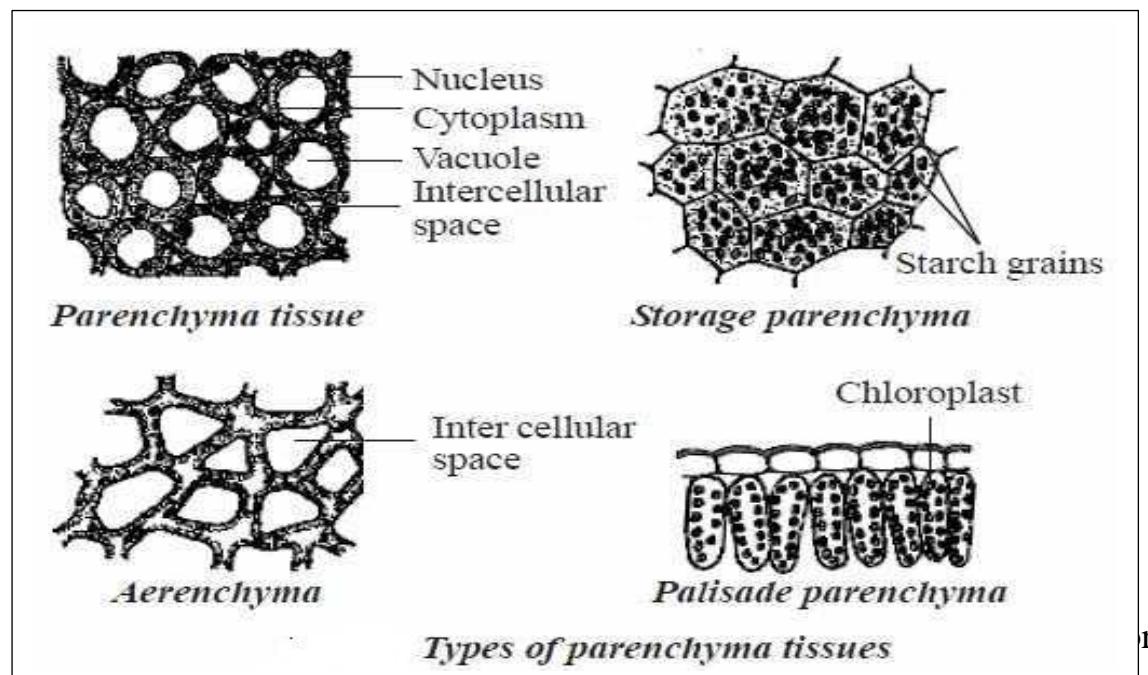
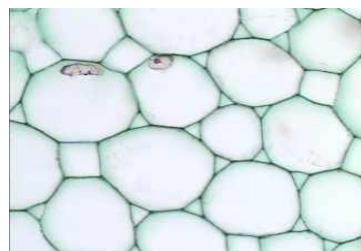
T.S. Showing mesophyll

T.S. passing with lamina

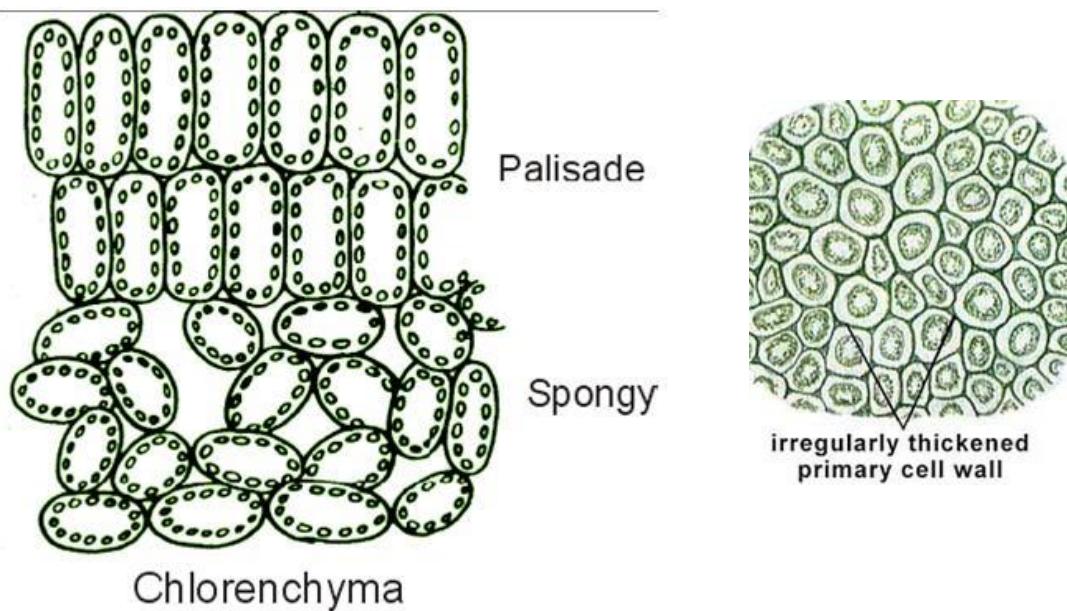
T.S. in leaf

The Cells and Tissues

The cell is the simple unite of the bodies of the living organisms. The cells differ in size, shape and function, but they similar in their nature in all organisms. Each cell has an outer layer termed cell wall which acts as protective layer and surrounds the cytoplasm. The cytoplasm contains the controlling centre of the cell, nucleus, which controls the characters and activities of the cell.

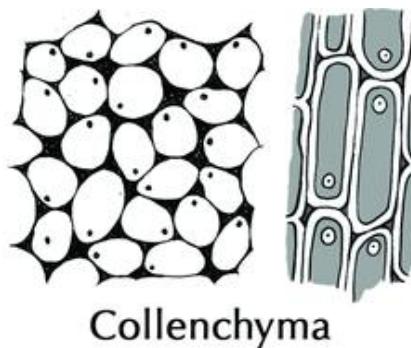


Tissue is formed from a group of cells which have common origin, structure and formation. According to the number of cell types that compresses in the tissue we have simple and compound tissues.

Parenchyma, Collenchyma and Sclerenchyma are examples of simple tissues, while Phloem and Xylem are complex tissues.

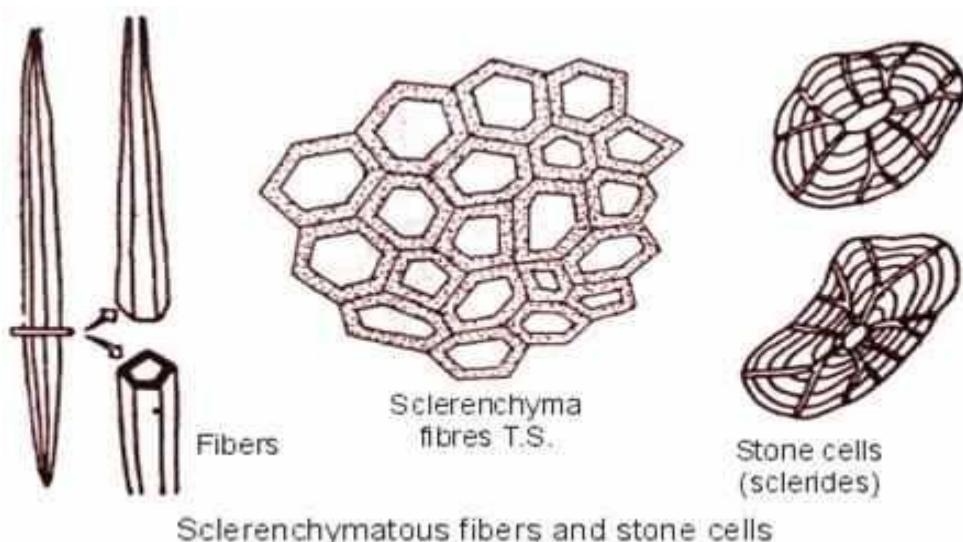

Simple tissue:

1- parenchymatous tissue:

It is formed of mostly rounded or irregular cells, mostly thin walled and having narrow intercellular space.



rounded {spongy tissue} and mostly contains chloroplast.


2- Collenchymatous tissue:

It is formed of rounded polygonal cells mostly with thickened cell wall and without intercellular spaces.

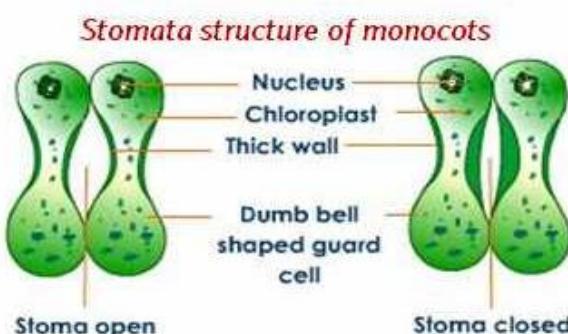
3- Sclerenchymatous tissue:

The cells of this tissue have thickened secondary cell walls, lignified and classified into:

- Fibers:** they are usually very long and narrow cells with tapering ends and occur in different forms.
- Sclereids:** these cells usually have thick secondary walls, which are strongly lignified and showing numerous simple pits.

4- Epidermal cells:

Epidermal cells are usually tabular, lenticular to somewhat radial flattened without intercellular spaces in between except for the stomata. They appear in surface view polygonal, either isodiametric or axially elongated.


Usually epidermal cells are covered with a protective film of cuticle which is thick or thin, also either smooth or stratified. It may also show trichomes.

A- Different types of Stomata:

In Monocotyledons:

Dumbbell-shaped “Graminaceous type”:

Stomata are rectangular in outline and the guard cells are dumbbell-shaped (having enlarged end & narrow flat middle parts).

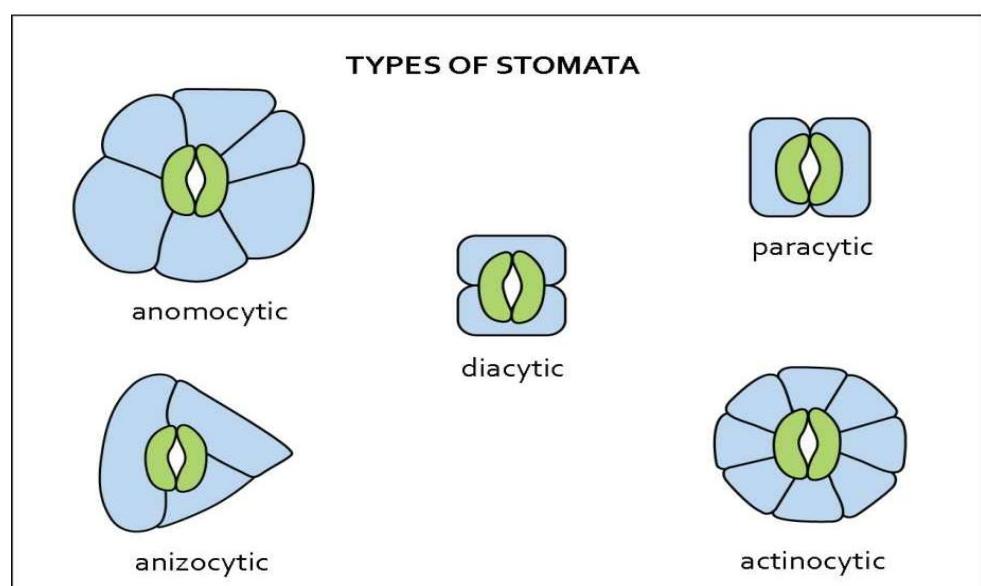
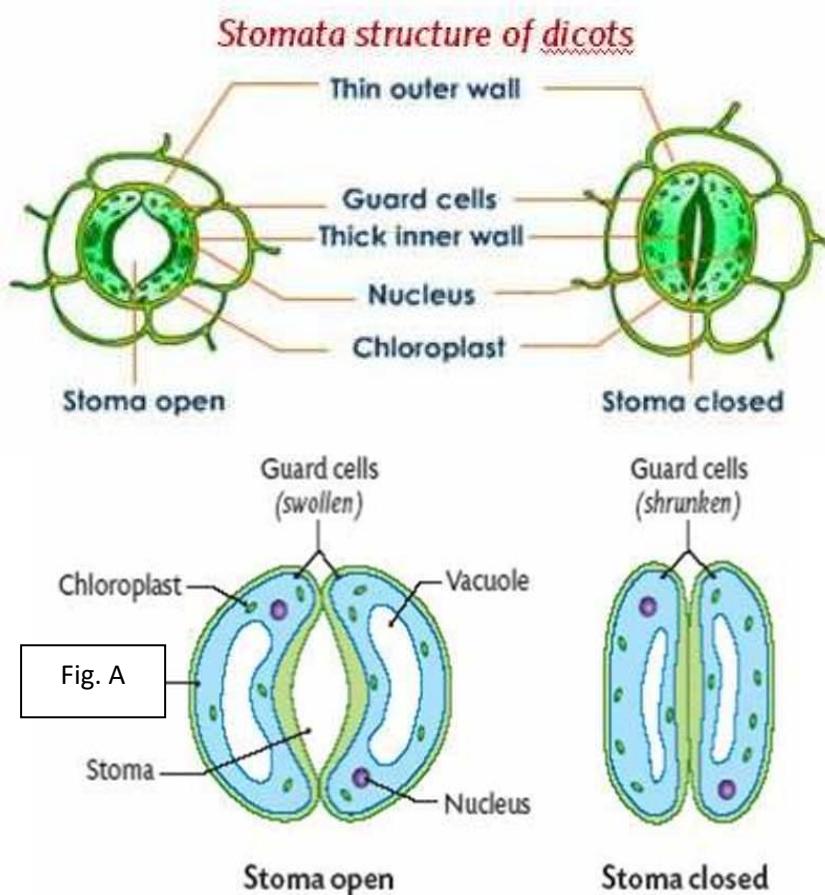
In Dicotyledons:

1- Anomocytic -type Stomata “Ranunculaceous”:

Note the surrounding cells are varying in number, have no special arrangement and generally not differ from other epidermal cells e.g.: Digitalis & Lactuca.

2- Paracytic type Stomata “Rubiaceous”:

Note the stoma is surrounded by two or more subsidiary cells, two of which having their long axis parallel to the osteole e.g.: Senna & Saponaria.



3- Diacytic type Stomata “Caryophyllaceous”:

Note the stoma is surrounded by subsidiary cells having their long axis perpendicular to the osteole e.g.: *Mentha*.

4- Anisocytic type Stomata “Cruciferous”:

Note the stoma is surrounded by usually 3 or more subsidiary cells, one of which is distinctly smaller than the others e.g.: *Belladonna* & *Eruca*.

Make a surface preparation for the supplied samples identify the different types of stomata, draw and label your drawings.

Figure A: showing function of stomata.

Figure B: showing different types of stomata.

B- Different types of Hairs:

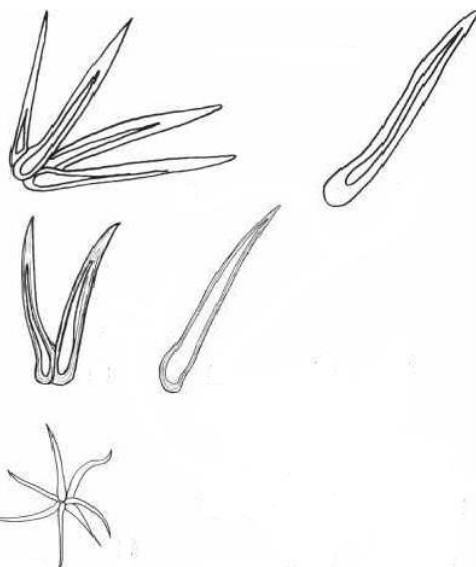
A. Non-glandular Hairs:

a- Unicellular Branched e.g.: Matthiola.

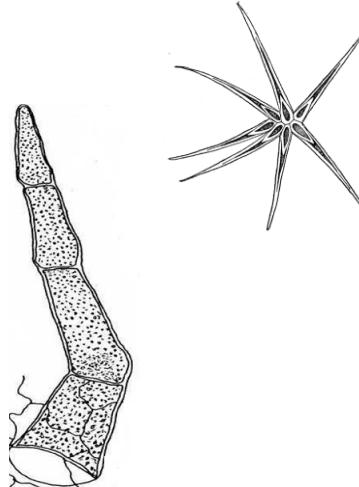
b- Unicellular Unbranched:

1. Simple covered with warty cuticle e.g.: Senna.
2. Swollen base contains cystolith of CaCO_3 e.g.: Cannabis.
3. Swollen base with lignified cell wall e.g.: Wheat.

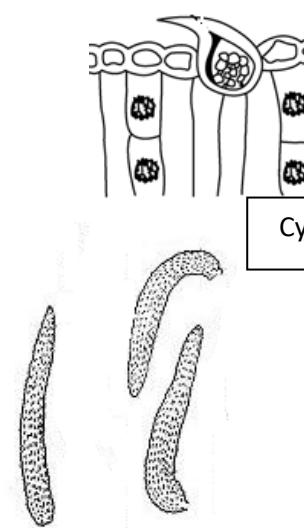
a- Multicellular Branched:


1. Simple e.g.: Tobacco.
2. Stellate e.g.: Boldo.
3. Peltate e.g.: Olea.
4. Tree-Like e.g.: Verbascum.

b- Multicellular Unbranched:


1- Uniseriate "one row of cells" e.g.: Simple hair as in Belladonna hair & Stramonium hair or T- shaped hair as in Pyrethrum.

2- Biseriate "two rows of cells" e.g.: Twin hair as in Arnica & Calendula.


3- Multiserrate "several rows of cells" e.g.: shaggy hair of Cumin.

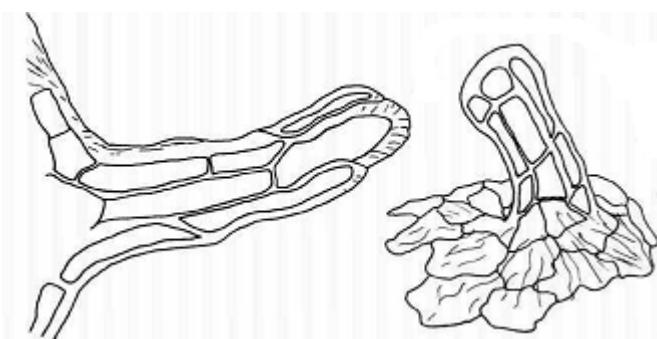
Other forms of non-glandular hairs

Stramonium hair

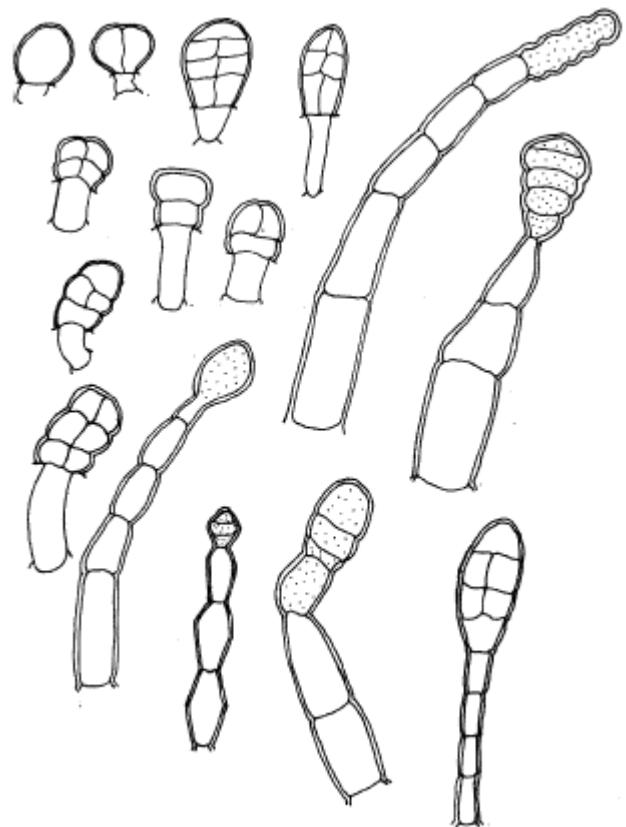
Senna hair

B. Glandular Hairs:

a- Uniserrate stalk with unicellular glandular head:


1. Uniserrate one - celled - stalk: e.g.: Digitalis hair.
2. Uniserrate 2-3 celled stalk e.g.: Belladonna & Lavender.

b- Uniserrate stalk with multicellular glandular:


1. One - celled-stalk & 2- celled head e.g.: Digitalis hair.
2. One - celled-stalk & biserrate head e.g.: clavate hair of Solanaceous.
3. One - celled-stalk & 8 radiating celled head e.g.: Labiateous hair of Mentha.

c- Biserrate stalk with biserrate head: e.g.: Composite hair.

d- Branched stalk with unicellular heads: e.g.: Hyoscyamus hair.

Shaggy hair

FOLIUM SENNAE

Senna Leaf

Syn: Sena; Sanamakki

Senna leaf is the dried leaflets of *Cassia senna* L. (*Cassia acutifolia* Delile.), known as Alexandrian or Khartoum senna, and of *C. angustifolia* vahl, known as Tinnevvelly, Indian or Kongo Senna, Fam. Leguminosae Caesalpinoideae (Fabaceae).

Senna leaf contains not more than 2% pods or other foreign organic matter.

The name Senna is from the native arabian name of the drug (Senna).

Cassia is meaning to cut off and refers to the fact that the bark of some species was once peeled off and used. The specific name; acutifolia in Latin referring to the sharply pointed leaflets, while angustifolia refers to the narrow leaflets.

History:

Senna was introduced into Western Europe by the Arabian physicians of the tenth and eleventh century, who preferred the pods to the leaves, though they employed both.

It was formerly exported from Alexandria; hence the name of the drug but now reaches the European markets from port Sudan. The Alexandrian Senna plants are small shrubs, about one meter in height, with compound pari pinnate leaves. It is indigenous and is cultivated at the middle and upper Nile districts of Africa (Kordofan, Senna). According to Isac Judaus, a native of Egypt, who lived about 850-900 A.D, Senna was brought to Egypt from Mecca.

The Indian senna plant is indigenous to Somali land, Arabia and the Punjab and is cultivated in South India (Tinnevvelly) and in Kongo.

Cultivation and Collection:

Alexandrian Senna is the product of both wild and cultivated plants of *Cassia Senna* L. It is collected mainly in April and in September. Cultivation is getting more common, especially near Khartoum and produces larger and finer leaves.

The natives take hold of the bushes with both hands and pull them off, allowing them to drop to the ground or cut down the bushes, allowing them to dry in the sun and later strip off the leaves. The bulk is brought to Om- Dorman where it is separated from pods and stalks by means of sieves. The leaves are then graded, partly by hand and partly by sieves into:

- a) Whole leaves.
- b) Whole leaves and half leaves mixed.
- c) Sifting. The drugs are packed loose, in mats or bales without pressing and railed to Port Sodan.

Tinnevelly Senna is obtained from cultivated plants of *C. angusufolia* vahl.

On irrigated land. The leaves are carefully collected and spread out to dry. They are then sorted and packed in large bales, using hydraulic pressure.

Description:

The leaves are compound; paripinnate, petiolate, leaflets are arranged on sides of rachis. Alexandrian Senna leaflets are about 2 to 4 cm long and 7 to 12 mm wide. When dry, they are pale greyish-green, thin, brittle, lanceolate to ovate lanceolate in outline; the widest part being below the middle. The margin is entire, and the apex is acute and mucronate with a distinct apiculus. The leaflets are unequal at the base (asymmetric), and the veins are distinct on the under surface. Both surfaces of the leaflets are pubescent, small whitish hairs being distinctly

visible especially near the veins. Leaves from cultivated plants are less rigid than those from wild-growing plants.

They have a faint, but characteristic odour and a mucilaginous slightly bitter, mawkish taste. Indian Senna leaflets resemble the Alexandrian. The main points of difference are:

1. Indian Senna is generally of yellowish green rather than greenish-green color. Color is usually noticed in bulk.
2. They attain a larger size than the Alexandrian; being about 2.5 to 6 cm long and 7 to 8 mm wide.
3. They are more uniformly lanceolate in shape.
4. They are less conspicuously asymmetric at the base.
5. They are less pubescent.
6. They are somewhat firmer in texture and are consequently less broken.
7. Owing to the fact that they are exported in compressed bales, they are usually flatter and show faint oblique or transvers markings where the midribs and margins of other leaves have been impressed.

Histology:

The structure of both leaflets shows an isobilateral (equifacial) structure.

The Epidermis consists of a single row of polygonal tabular cells, with straight anticlinal walls; there are stomata of the paracytic type on both surfaces about equal numbers. Most of the epidermal cells contain a thick deposit of mucilage on the inner tangential walls to fill about the volume of the cells; this mucilage stains red with ruthenium red reagent. The epidermal hairs are non-glandular unicellular, thick-walled, warty frequently curved near the base so that the limb is appressed to the epidermis.

The Mesophyll shows a single layer of palisade, abutting on each epidermis except in the midrib region where only the upper palisade is continuous; the cells of the lower palisade are with wavy anticlinal walls and are shorter than those of the upper. The Spongy tissue shows idioblasts containing cluster crystals of calcium oxalate. The Midrib shows a crescent-shaped vascular bundle a accompanied by an arc of pericyclic fibers below and a compact mass of fibers above, parenchyma containing prismatic crystals of calcium oxalate abutting on these groups of fibers forming crystal-sheath. Fibers are lignified with blunt ends. Separating the upper layer of small cells and finally a layer of palisade cells, between the lower arc of crystal fibers and the lower epidermis occur several layers of parenchyma shedding off into collenchymas. The bundle is collateral, fan shaped having xylem uppermost and phloem beneath.

Longitudinal sections cut through the centre of the midrib show the lengthwise aspect of the elements. The vessels are spiral annular and pitted. The pericyclic fibres are elongated narrow thick walled, with tapered ends sliced over each other and showing oblique slit-like pits. A crystal sheath is just outside of each group of these fibres. The upper epidermis is readily distinguished from the lower by locating the layer of palisade cells directly beneath it.

Surface sections of both upper and lower epidermises exhibit polygonal epidermal cells amongst which will be noted broadly elliptical stomata each of which has two unequal neighbouring cells parallel to its larger axis. Unicolor, pointed non-glandular hairs and the round scars of the bases of these or cicatrix will also be observed.

Powdered Senna:

Powdered senna leaf is light green to greenish yellow having a faint and chrematistics odour and mucilaginous, slightly bitter, mawkish taste.

It is characterized by numerous fragments (green) some may show epidermal cells, stomata of the paracytic type, warty hairs or their thickened cutinized cicatrix with

radiating epidermal cells; idioblasts of cluster crystals (clusters) ; isolated unicellular warty hairs; fragments of bundles of lignified vessels; fragments of bundles of lignified fibers accompanied by crystal sheath; few simple starch grains; hyaline angular particles of mucilage which attains pink with ruthenium red (pectose mucilage).

Constituents:

2.5% glycosides of dianthrone of rhein e.g. sennoside A & B, and of rhein and aloe emodin e.g. sennoside C & D, and other anthraquinone glycoside namely; aloe emodin dianthrone, rhein 8- athrone 8-*O*-glycoside, rhein 8-*O*-glycoside, aloe emodin 8-*O*-glycoside, and free aloe-emodin, anthranol and rhein. A primaly glucoside was isolated, more potent than sennosides, mol. Wt 2000, freely soluble in water and containing 2 moles of glucose. Other constituents present, include, two naphthalene glycosides: 6 hydroxy musin and tinnevelli Kamphenin & its glucoside, isorhamnetin, phytosterol, pectose mucilage and calcium oxalate.

Uses:

Senna stimulates the muscular coat of the intestine and produces purgation, which is not follows as is commonly the case, by constipation. It is therefore one of the most useful purgatives, especially in cases of habitual constipation.

Tests of identity:

(Brontrager test)

Boil 0.2g of the crushed or powdered senna leaf with 4 ml of alcoholic potassium hydroxide T.S. for about 2 to 3 min. in test tube, dilute with 4ml of water add two drops of hydrogen peroxide solution (20 v) and filter. Acidify 5 ml of the filtrate with dilute hydrochloric acid, cool and shake well with 5ml of either-or benzene R. Separate the ether into clean test tube and shake with 2 ml of dilute solution of ammonium hydroxide, a rose red to intense red, but not yellow colour (c.f. *C. auriculata*) is produced in the aqueous layer.

Difference between Indian & Alex Senna by chemical test: The ether extract of the hydrolysed drugs gives with methanolic solution of magnesium acetate, a pink (day light) and pale greenish orange (v.v light) in Alexandrian Senna, an orange colour (day light) and yellowish green (v.v light) in Indian senna.

Test for purity:

Powdered Senna shows no red fragments when mixed with 80% sulphuric acid (*C. auriculata*); no multicellular hairs (*Solenostemma argel*, *C. auriculata*) ; no epidermal cells with straight or wavy walls and striated cuticle (*Aillanthus glandulosa*, *Coriana*); no epidermal cells with papillae (*Cassia obovata*, *Colutea*); no lumps of brown secretion and sclereids, no foreign starch granules exceeding 6.5 u in diameter (stalk).

Substitutes and Adulterants:

1) *Cassia obovata* colladon. (Dog Senna). The plant grows in Upper Egypt. It was formerly highly valued as a drug is cultivated in Italy and sometimes terms "Italian Senna " Leaves are broadly obovate, apex is abruptly tapering, venation pinnate, district, constituents similar to Senna. The leaves are sometimes taken for Alexandrian Senna.

They may be recognised by the papillosed cells if the lower epidermis.

2) Arabian Senna. Obtained from wild plants of *C. angustifolia* collected in southern Arabia, shipped from Hodeida to part Sudan and railed to Cairo, Where end similarly to Alexandrian Senna and export. Elongated lanceolate, inferior qualities, inferior qualities often discoloured and mixed with stalks; sometimes mixed with Alexandrian senna. But may be distinguished by the shape and also by the vein- islet numbers. They contain about 2.5% of total oxymethyl anthraquinones.

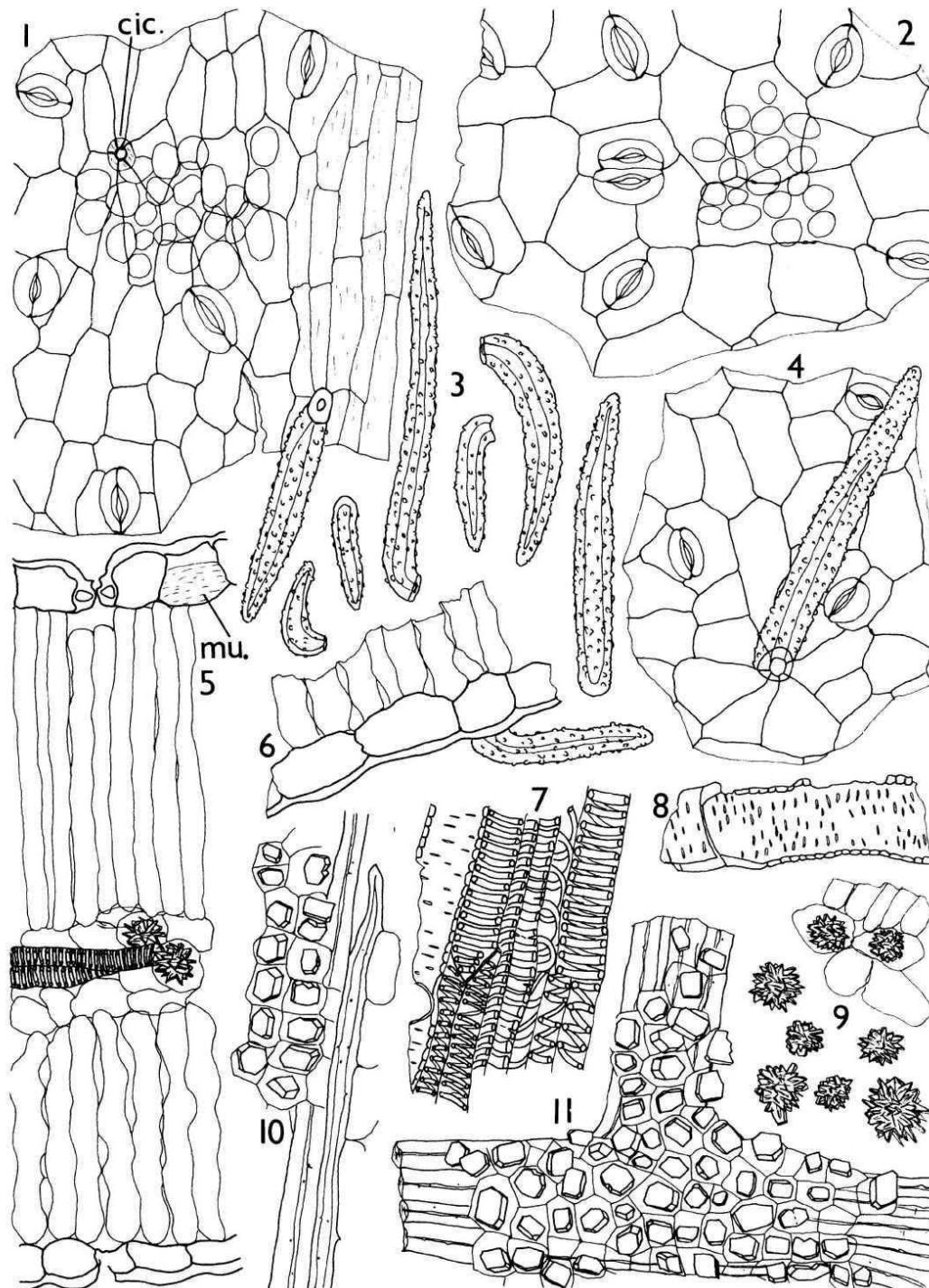
3) Mecca or Bombay Senna is also obtained from *C. anagustifolia* in Arabia, leaflets are usually more elongated, and the colour is darker.

4) *Cassia auriculata* L. (Palthe Senna); small, thick walled, unicellular trichomes average 240 to 650 microns in light, i.e. about three times as long as those of the two genuine sennas, and passes a fairly smooth cuticle the upper palisade consists of two layers of cells crimson with 30% sulphuric acid.

5) *Cassia holosericria* Frosenius; smaller, more obtuse, hairy.

6) *Cassia Montana* heyone darker, rounded apex, dark network of veins.

7) *Solenostemma argel* hyone (Argel Leaves) (Fam. Asclepiadaceae). They grow wild in Egypt, Nuba, Kordofan, resemble senna in colour ad outline, but are distinguished by their thick, rigid texture and peculiarly curled, curved or twisted appearance: surface finely wrinkled, veins not evident, leaf equal at the base : hairs three celled, taste distinctly bitter; no anthraquinone derivatives are present. Mahran et al. isolated the two glycosides argelin and argelasid from Argel leaves.


8) *Tephrosia apolline de Candelle* (Fam. Leguminosea) obovate oblong pubescent, emarginate, lateral veins straight and parallel.

9) *Colutea arborescens* L. (Fam. Leguminosae); green, very thin.

10) *Ailanthus glanduliosa* Desf. larger, triangular ovate, 7 to 10 cm long, strongly striated cuticle no stomata on upper epidermis, cluster crystals near veins.

11) *Globularia alypum* L. (Fam. Globulariaceae. (Provance Senna); spathulate, rounded apex, mucronate; prisms of calcium oxalate in the epidermal cells.

12) *Coriaria mutifolia* L. Fam. Coriariaceae; ovate lanceolate, greyish green two prominent lateral veins, conspicuous midrib.

Powdered Senna Leaf

Folium Digitalis

Digitalis folium: Digitalis leaf, feuille didigitala, foglie digitala, fingrrhut blaatt.

SYN: Digitalis, Foxglove Leaves, Diogtire, Awraqu Olsbo – Ilathraa.

Digitalis: is the leaves of the *Digitalis purpurea* Linne. , Family Scrophulariaceae, Collected and rapidly dried at about 55 to 60 °C. Digitalis leaf contains not more than 2% of foreign organic matter, 0.8g of digitalis leaf corresponds to at least 10 international Digitalis units. Digitalis is derived from Latin "Digitus" meaning a finger `and refers to the finger- shaped corolla, it was named by Tragus (1639).

The Specific name purpurea is Latin and refers to the purple colour of the flower.

History:

The purple "Foxglove" is a small herb, widely distributed throughout Europe and is common in England as a garden plant and is naturalized in North America. It is probably indigenous to central and northern Europe. it appears to have been long used as a domestic medicine for external application; it was introduced in the British pharmacopoeia in 1650; although it did come into frequent use until about a century later, when its therapeutic properties investigated by Dr. William Withering (1776-1779), who obtained knowledge if its value I drops. Little was known concerning it's activated principles, until Nativelle, a French scientist discovered the potent glycoside digitoxin in 1871, he called it "Digitaline" crystallisee.

Cultivation and Collection:

The plant is a biennial herb. it is propagated from seeds, which are mixed with sand, because of their small size and are sown in February or March in seeds-beds, the seeds are set out in fields about 40 cm between the plants in each row. Plants grow well in sandy soil provided that a certain amount of manganese is present; this element being apparently essential and always to be found in the ash.

The soil employed is of the primary type but should be slightly acid and must be well-drained and kept as free of weeds as possible, in order to ensure good growth of the plants in the wild state it is usually found in semi-shady positions. The leaves are gathered both from plants of the first and second one-year growth. The best time to collect leaves from the second-year growth in June before the expansion of the flowers. These leaves are richer in glycoside than leaves collected after the flowers have opened.

Collection should take place in dry weather conditions. In the afternoon; and drying is done as much as possible at a fairly low temperature and should be done in the dark. Three methods are used for drying:

- 1) Commonly the leaves are spread on trays with fairly fine wire netting bottom, arranged in series placed in a well-closed dark, "Drying Shed", "Drying Chamber", or heated shed, heated by hot air from a furnace in the basement at about 55-60 ° C and the process takes from 4 to 10 days.
- 2) A second method of drying is to put the leaves on the heated shelves of a vacuum drying oven which is much preferred as leaves are very sensitive to high temperature. A vacuum drier is composed of an airtight chamber, the walls of which are made usually of metal (stainless steel) Digitalis leaves are placed on wire-matting trays. Heat is applied by radiators or hot led at the inner walls of the drying chamber, while n efficient vacuum pump

%%operated to reduce the pressure inside the chambers so that water is removed at high rate and low temperature. Very efficient pumps are required to deal with the large volume of water vapor evolved. The whole operation is completed in few hours.

3) Recently drying of *digitalis* leaves is done by Lyophilization or freeze drying which is a process of drying in vacuum from the frozen state and ice is sublimed from the frozen product at extremely low pressure. This removal of water is actually an application of the process of sublimation. Frozen water sublimes at temperatures below 0°C and pressure below 3mm of mercury. The dried leaves are sorted in the drying rooms till needed for distribution when they are packed in well-filled, airtight containers such as well-closed tins or the powder may be put into small bottles or ampoules containing a single dose of the drug. They must not contain more than 6% of moisture before marketing.

Description:

Digitalis leaves are ovate oblong ovate to ovate-lanceolate, simple and entire. They are usually from 10 to 35 cm in length and 4 to 11 cm in width and abruptly contracted and

decurrent at the base into winged petiole which is from 5 to 10 cm long and up to 3 mm in breadth. The margin is irregularly crenate or dentate, and apex is obtuse. The upper surface is dark green wrinkled and scarcely hairy. The lower surface is dull, pale green to greyish green and soft, pubescent, venation is pinnate reticulate, veins are depressed on upper surface and prominent on the lower giving the lamia a characteristic chequered appearance. The midrib and principal veins are broad and flat, often purplish; the lower veins are contained in the wing of the petiole. The side the veins leaves the midrib at an angle usually of less than 45°, curving towards the apex and anastomosing near the margin and the veinlets generally are prominent on the under surface of the leaf. The texture

is papary. The odour is slight (tea-like) when dry, peculiar and characteristics when moistened. The taste is bitter.

Histology:

The leaf is dorsiventral and the midrib is biconvex and projects strongly on the lower surfaces. The epidermal cells are with straight or slightly sinuous anticlinal walls, more strongly wavy in the lower surfaces. Each is surrounded by 3 to 7 mostly 4 cells of the anomocytic type. There are few glandular hairs consisting of short unicellular, occasionally multicellular stalk and one or two-celled, very rarely four celled head.

Non-glandular hairs are numerous, uniseriate, multicellular, usually 3 to 5 cells and generally with thin walls, fine warty cuticle and blunt not acute tip some of the cells may be collapsed .

Each tooth of the margin exhibits one; rarely two large Water Pores on the upper surface. The mesophyll shows a single layer of palisade short cells occasionally 2 or 3 sometimes not differentiated. The spongy mesophyll is formed of several layers of stellate cells. The midrib shows an arc of vascular bundles with radiate xylem, beneath which a narrow phloem is, 1-celled medullary rays accompanied by a collenchymatous pericycle of small cells and an endodermis containing starch granules forming a starch sheath.

Powder:

Powdered digitalis leaf is dark green characterized by numerous irregular fragments of epidermis with stomata of anomocytic types: numerous fragments of non-glandular hairs, fragments from petiole and large veins showing spiral, annular and reticulate vessels.

Sclerenchyme and crystals are absent.

Constituents:

In the fresh leaf and probably also in the care-fully dried leaf there are two glycosides, called "Purpurea glycoside A and B (0.3 to 0.5 %).

Purpurea glycoside A is hydrolyzed to yield 1 molecule of digitoxin which is also glycoside and 1 molecule of glucose.

Purpurea glycoside B similarly yields the glycoside gitoxin and one molecule of glucose.

Digitoxin, on hydrolysis gives the aglycone; digitoxigenin & 3 molecules of sugar named digitoxose.

Digitoxin, on hydrolysis yields gitoxigenin and 3 molecules of digitoxose. A third glycoside, gitalin is also present. Gitalin when hydrolyzed yields gitoxigenin hydrate and 2 molecules of digitoxose.

Other glycosides in the leaf are: odoroside H, which yields digitoxigenin and 1 molecule of digitalose, also the glycosides glucogitaloxion, gitaloxin, verodoxin and glucovero-doxin, all of which yield the aglycone gitaloxigenin; stroepeside, which yield the aglycone gitaloxigenin; and 1 molecule of digitalose, verodoxin yields 1 molecule of digitalose and gitaloxigenin.

In addition, the leaves contain a yellow flavone, luteolin and three saponins, digitonin tigonin and gitonin.

Digitonin = digitogenon + 4 moles galactose + 1 mole xylose.

Gitonin = gitogenin + 3 moles galactose + 1 mole pentose.

Tigonin = tigogenin + 2 moles galactose + 2 moles glucose + 1 mole rhamnose.

Recently some free anthraquinones were isolated; 1- methoxy 2-methylanthraquinone 3- methoxy 2-methyl anthraquinone 3- methyl alizarin, methoxy digilutein.

Uses:

It is a cardiotonic. It increases the contractility and improves the tone of the cardiac muscle, both reactions resulting in a slower but much stronger heartbeat. It is used in most forms of cardiac failure, as auricular fibrillation ascites.

Digitoxin is cumulative and the action of preparations of foxglove must therefore be watched.

Allied Drugs:

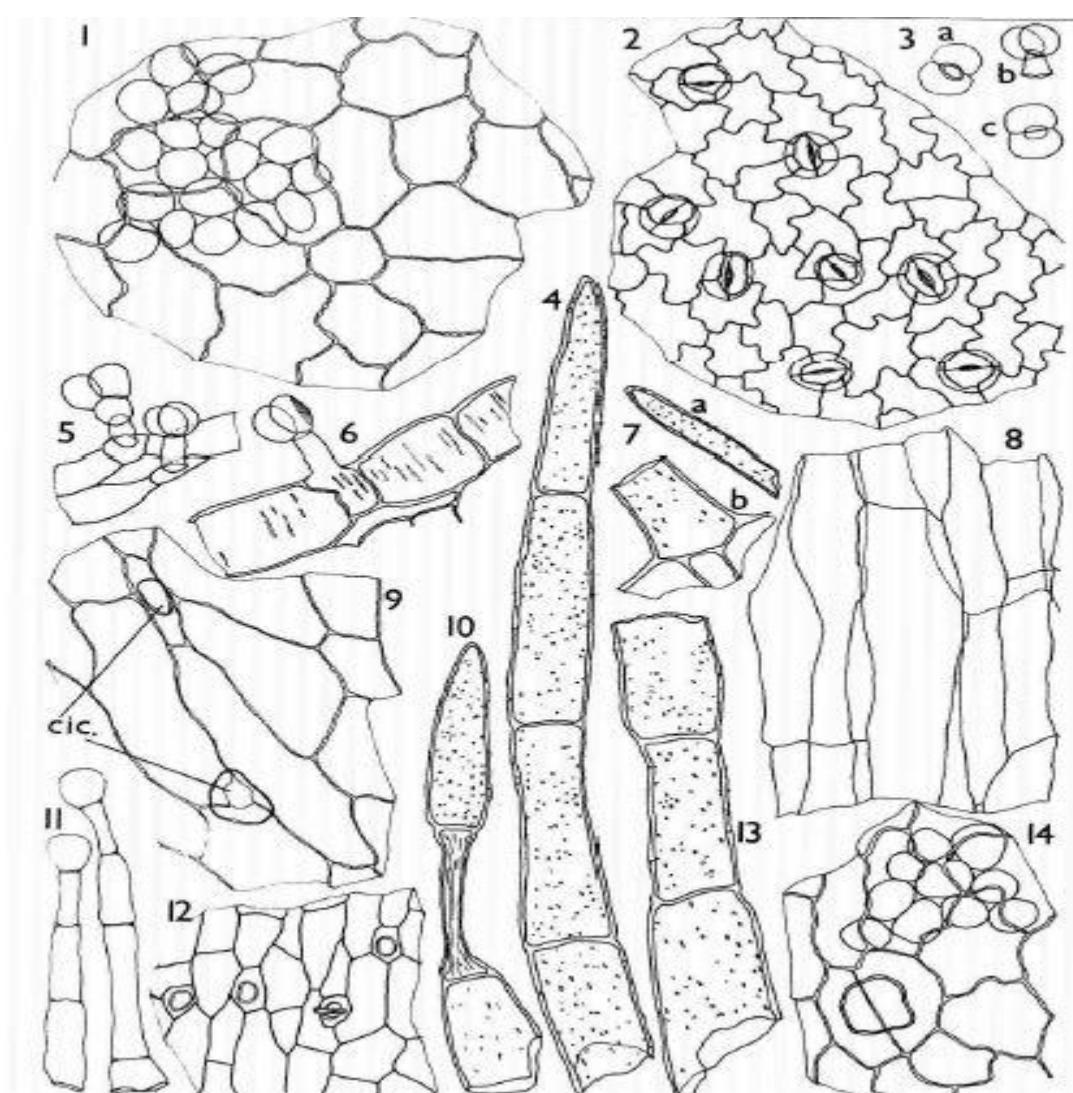
The leaves of the following species of digitalis occur as articles of commerce and are used medicinally in the same way as the leaves of *Digitalis purpurea* L.

1) *Digitalis lutea* L. (Straw foxglove) is a plant similar in general habit to *D. purpurea*, but with small flowers, having yellow corolla, it is a native of southern and western Europe and is cultivated in U.S.A. The sessile leaves are up to 28 cm long and 6 cm wide but the majority are not above half that size. the leaves are oblanceolate with and indistinctly serrate or dentate margin having irregularly spaced teeth and fringed with long trichomes in the basal half of the leaf, which is otherwise almost glabrous; the main veins are few they leave the midrib at a very acute angle, and travel for some distance towards the apex while the smaller branches are inconspicuous, the giving an appearance simulating a parallel venation. Calcium oxalate is absent. The leaves are almost identical in activity to official digitalis;

2) *Digitalis lanata* Rbrh. (Gerician Foxglove) is a species which grow in the region adjacent to the Danube In Central Europe; it has been cultivated in England and in U.S.A. the plants generally resemble those of *D. purpurea*, but the shape of the corolla is different, and the pedicels are covered with wooly trichomes, otherwise the leaves are glabrous. Venation resembles *D. lutea*. Calcium oxalate is absent. The leaves are sessile liner lanceolate to oblong lanceolate, up to 30 Cm long & 4 Cm broad. The margin is ciliate, apex acuminate & the decurrent base, the winged petiole the veins leave the midrib at very acute angle. The

epidermal cells show beaded anti-clinal walls, 10-14 celled nonglandular hairs almost confined to the margin. Glandular hairs of bicellular head and 3-10 celled, uniseriate stalk. They are twice to four times as active as official drugs. *Digitalis lanata* Ehrn. contain the crystalline glycosides digtoxin, gitoxin, the lanatosides, A, B, C, D and E.

3) *Digitalis thapsi* linn. (foxglove): the leaves are from 5 to 15 cm long and 1.5 to 5 cm wide, they are dark yellowish green, lanceolate to oblanceolate and have an irregularly seriate to dentate margin, both surfaces are densely covered with long uniseriate glandular trichomes and cuticle is strongly striated; non glandular; trichomes are absent.


Pericyclic fibers are present in the meristems and prims of calcium oxalate are scattered throughout the mesophyll. They are 1.25 to 3 times as potent as official digitalis leaves.

Tests for Identity:

- 1) On micro sublimation, powdered digitalis leaf gives brown and colourless droplets and very fine acicular crystals which strongly polarize light.
- 2) Keller-killiani test for digitoxose, Boil 1 g of powdered digitalis leaf with 10 ml of 70% alcohol for two to three min. filter; to 5 ml of filtrate add 10 ml of water and 0.5 ml of strong solution of lead acetate, shake and filter. Shake the filtrate with 5 ml chloroform, allow to separate, pipette off the chloroform, allow to separate, pipette of the chloroform and remove the solvent by gentle evaporation in a porcelain dish. Dissolve the cooled residue in 3 ml of glacial acetic acid containing 2 drops of 5 percent ferric chloride solution. Carefully transfer this solution, and add 2 ml of concentrated sulphuric acid, a reddish- brown layer forms at the junction of the two phases and upper layer slowly becomes bluish- green darkening with standing.
- 3) Tests for 5 membered lactone ring

a- baljet test: to a portion of the cold residue (form test 2) add few drops of 5% alcoholic sodium hydroxide solution followed by few drops of alcoholic picric acid solution (2%) an orange red color is produced.

b- Kedde test. to another portion of the residue add few drops of 5% alcoholic sodium hydroxide solution followed by few drops of 2% alcoholic 3.5 di nitrobenzonic acid solution a violet color is produced.

- 1 Upper epidermis in surface view with underlying palisade cells.
- 2 Lower epidermis in surface view with anomocytic stomata.
- 3 Glandular trichome with bicellular heads seen (a) from below (b) from the side and (c) from above.
- 4 Part of a covering trichome.
- 5 Glandular trichomes attached to a fragment of the epidermis.
- 6 Epidermis in sectional view showing pitting in the walls and a glandular trichome.
- 7 Fragments of covering trichomes: (a) apical cell and (b) basal cell attached to a fragment of the epidermis.
- 8 Cortical parenchyma in longitudinal view.
- 9 Epidermis in surface view showing cicatrices (cic).
- 10 Part of a covering trichome showing a collapsed cell.
- 11 Glandular trichomes with uniseriate stalks and unicellular heads.
- 12 Epidermis from over a vein in surface view, showing cicatrices.
- 13 Fragment of a large covering trichome.
- 14 Upper epidermis in surface view showing a cicatrix and underlying palisade cells.

Folium Stramonii

Syn: Stramonii Herba: Stramoium Leaf; Thorn-apple Leaf

Scientific Name: *Datura stramonium* L.

Family: Solanaceae.

Stramonium is dried leaves with or without flowering tops of *Datura stramonium* L. and *D. tatula* belong to family Solanaceae.

Collected from the plant in flowering stage. Stramonium contains not more than 3% of stramonium stem, and not more than 2% of foreign organic matter, and yields not less than 0.255 of total alkaloids, calculated as hyoscyamine.

The name Datura is from Arabic, tuatara or tatula, and the specific name stramonium, means stink weed.

Collection: The first collection of leaves is made by removing the lower leaves about July and the main collection of the upper flowering tops is made about the end of August. The drug is dried as rapidly as possible at a temperature of 45°C, a process requires about 48 hours.

Description:

Commercial leaves are much shrunken and twisted. Leaves are grayish green in colour, the whole leaves are 8- 25cm long and 7- 15 cm wide.

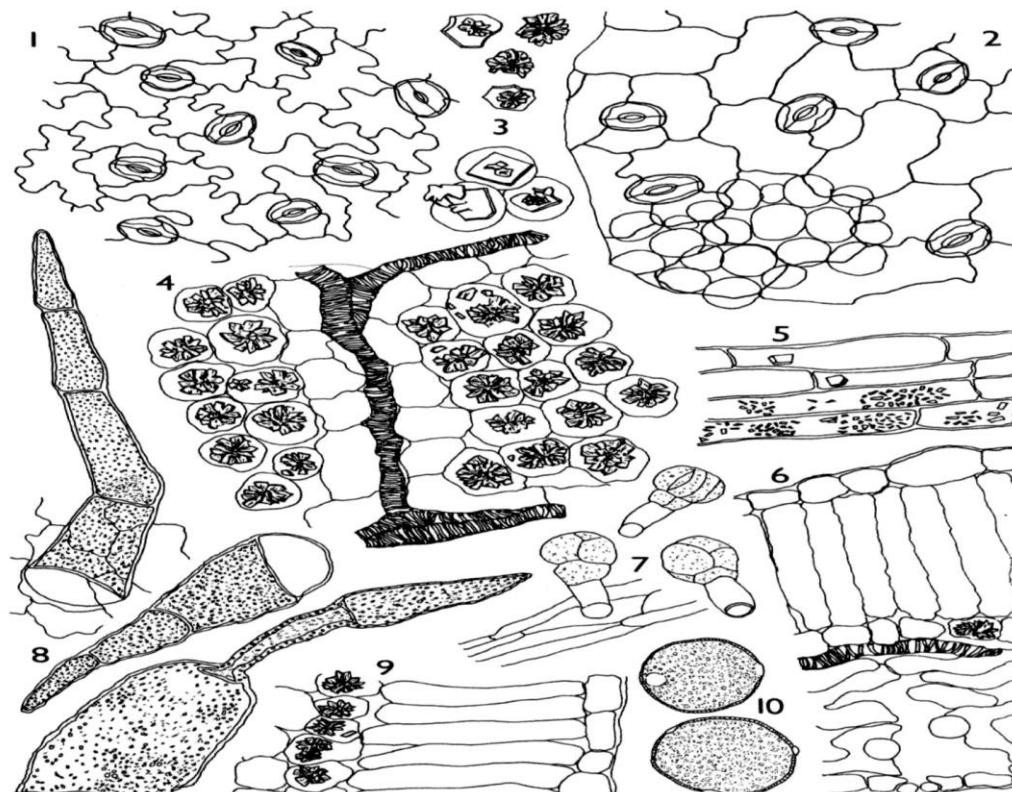
Stramonium has slightly unpleasant odour and a bitter taste, hairs, generally few present mainly near the veins on the lower surface. Glandular hairs occur on the under surface of veins, each with 1-2 celled curved stalk and multicellular 2-7 celled head. The non- glandular hairs are conical curved, with warty walls.

The Stramonium powder:

Greyish green- to brownish- green; characterized by numerous green fragments of mesophyll and epidermis with stomata of anisocytic type and warty non-

glandular hairs; numerous crystals of calcium oxalate, mostly clusters and few prisms and sandy crystals.

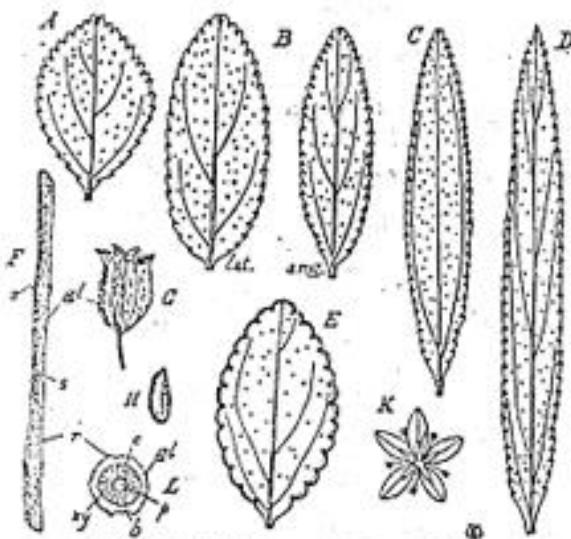
Constituents:


Stramonium contains alkaloids; hyoscyamine, 0.2- 0.7 % and possibly atropine.

Uses:

Stramonium is almost used in treatment of spasmodic affections of the respiratory organs.

Tests for purity:


Powdered Stramonium gives positive alkaloidal tests (Dragendorff's test). *Datura stramonium* Leaf

Powdered Datura leaves

Buchu Leaf

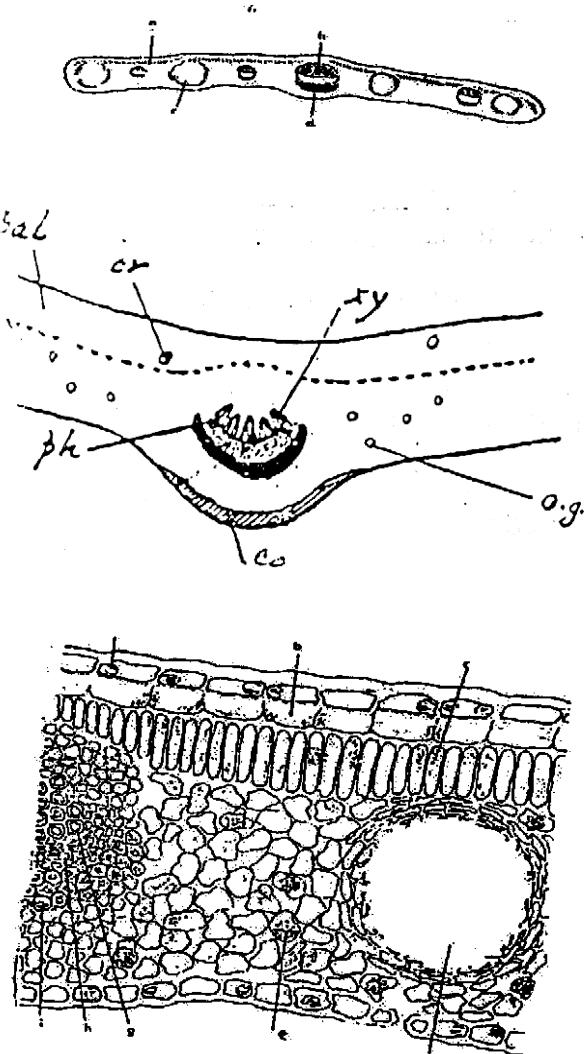
Synonyms: Short Buchu, Round Buchu.

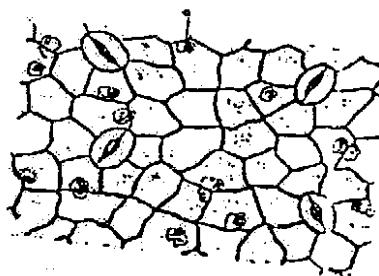
Buchu. Leaves of *A.* *Barosma betulina*; *B.* *B. arisaniana*, var. *kalifolia*; *C.* *B. arisaniana*, var. *amplexifolia*; *D.* *B. emarginatum*; *E.* *B. betulina*. All $\times 2$. *F.* Stem of *B. betulina* $\times 1$. *G.* Fruit of *B. betulina* $\times 2$. *H.* Seed of *B. betulina* $\times 2$. *I.* Root of *B. betulina* $\times 1$. *J.* Bark of *B. betulina* $\times 1$. *K.* Flower of *B. betulina* $\times 1$. *L.* Transverse section of stem of *B. betulina* $\times 6$. *M.* Wood of *B. betulina* $\times 6$. *N.* Gland; *O.* Path; *P.* Ridge; *Q.* Confluent; *R.* Axilem.

Part Used:

- Dried leaves of *Barosma betulina* (Fam. Rutaceae).
- Buchu contains not more than 5% of Buchu stem, not more than 1% of foreign organic matters and yields not less than 2.0% v/w of volatile oil.

Morphological Description:


- The leaf is simple, very shortly petiolate and the lamina is rhomboid, obovate and green to yellowish green in color.
- The apex is blunt and strongly recurved, the margin is dentate, becoming serrate towards the base.
- The midrib is prominent on the lower surface and venation is pinnate, with only four lateral veins distinct.
- The surface is almost glabrous, punctuate, not smooth due to small,


scattered prominences, caused by the presence of scattered oil glands in the mesophyll as well as the marginal glands, one of which is situated at the base of each indentation and one in the apex of the lamina.

- Buchu leaf has a strong, aromatic and characteristic odor, especially when crushed and has a strong and aromatic taste.

Histological Description:

- The leaf shows a dorsiventral structure.

1. The Epidermis:

- It consists of polygonal cells with straight anticlinal walls, thick cuticle and containing a thick deposit of mucilage on the inner tangential walls and sphaerocrystalline masses or aggregates of feather-like crystals of diosmin, which is insoluble in NH_4OH solution but soluble in KOH solution, producing a yellow color.
- Stomata are present on the lower surface only, each surrounded by 4 to 6 cells of anomocytic (ranunculaceous) type.
- Non-glandular hairs are very few, present especially on the midrib, unicellular, conical, and thick-walled.

2. The Mesophyll:

- It shows a single layer of palisade cells, continuous in the midrib, spongy tissue containing cluster crystals of calcium oxalate and ovoid schizolysigenous oil glands.
- The midrib shows a crescent-shaped vascular bundle, with radiating xylem and a narrow phloem, and an arc of pericycle of non-lignified fibers below.

Microscopical Identification:

- Powdered Buchu is light green in color, with a strong aromatic odor and taste.
- Microscopically, it is characterized by:
 - Fragments of epidermal cells with sphaero-crystals or aggregates of feather-like crystals of diosmin.
 - Numerous green fragments with oil glands and numerous globules of volatile oil.
 - Very few simple hairs.
 - Cluster crystals of calcium oxalate.
 - Fragments of vascular tissue and non-lignified pericyclic fibers.
 - Hyaline angular particles of mucilage, which stain pink with Ruthenium Red solution.

Active Constituents:

1. Volatile oil (1.2-1.45%), the oil contains about 30% of diosphenol, which is an enolic monoterpenic ketone, the oil also contains the ketone menthone, which is responsible for the peppermint-like odor.
2. A flavone glycoside (diosmin), which upon hydrolysis yields glucose, rhamnose and diosmetin.

Therapeutic Uses:

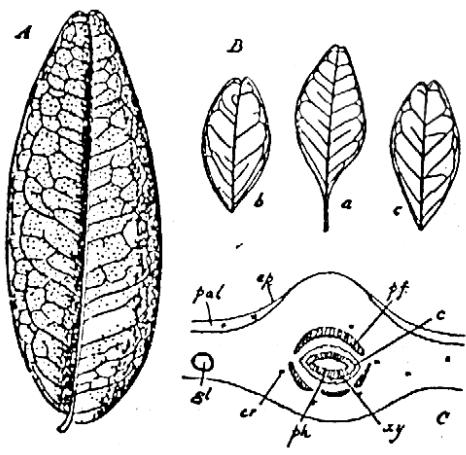
1. As a disinfectant to the urinary tract. The oil is excreted by the kidneys, rendering urine slightly acidic.
2. It has diuretic and diaphoretic action.
3. Anti-inflammatory for the colon, gums, mucous membranes, prostate, sinuses, urinary tract, and vagina.
4. Indicated for bladder and kidney problems, diabetes, digestive disorders, fluid retention, and prostate disorders. Particularly helpful for bladder infections.

Commercial Varieties of Buchu:

1. Oval Buchu (*Barosma crenulata*)

- It is obtained from the leaves of *Barosma crenulata*. They are oval to oblong. The margin is crenate or minutely dentate, but it is nearly entire near the base. The apex is blunt and not recurved.
- It possesses marginal oil glands. It contains volatile oil with less percentage of diosphenol.

2. Long Buchu (*Barosma serratifolia*)


- It is obtained from the leaves of *Barosma serratifolia*. The leaves are linear lanceolate in outline, narrower and larger than those of *B. betulina*.
- The margin is serrate, and the apex is distinctly truncate.

- The leaf possesses oil glands similar to those of short buchu; one being distinctly visible on the truncate apex when examined by a lens.
- They resemble short buchu in odor and taste.
- Leaves of *B. serratifolia* may be distinguished from those of *B. crenulata* by the marked 3-nerved venation which is never found in *B. crenulata*.
- The leaves contain volatile oil which is free from diosphenol.

Jaborandi Leaf

Part Used:

- Dry leaflets of *Pilocarpus microphyllus* (Maranham Jaborandi), *P. jaborandi*, (Pernambuco Jaborandi) and *P. pinnatifolius* (Paraguay Jaborandi) (Fam. Rutaceae).

Morphological Description:

- The plant of *P. microphyllus* bears imparipinnate compound leaves with about seven leaflets. The drug consists of separate leaflets and a certain amount of leaf rachis. The leaflets are emarginate at the apex.
- The terminal leaflets are oval symmetrical and have a petiole with a winged margin.
- The remaining leaflets are obovate, asymmetric, and sessile.

- Leaflets on the left and right sides of the leaf may be distinguished from one another by the fact that the broader side of each leaflet lies away from the rachis.
- The veins are pinnate and anastomose near the margin.
- The drug is greyish green to greenish-brown in color and brittle in texture.
- Numerous small oil glands may be seen by transmitted light (punctate).
- Jaborandi has a slightly aromatic odor when crushed and a bitter and aromatic taste, accompanied by an increase in the secretion of the salivary glands.

Histological Description:

- The leaf shows a dorsiventral structure.

1. The Epidermis:

- The upper epidermis consists of polygonal tabular cells with straight beaded anticlinal walls, smooth cuticle, and no stomata.
- The lower epidermis consists of polygonal cells with slightly wavy anticlinal walls, smooth cuticles and anomocytic stomata.
- Unicellular non-glandular hair with a smooth cuticle and pointed tip.
- Epidermis of Paraguay Jaborandi shows a striated cuticle.

2. The Mesophyll:

- It shows a single layer of discontinuous palisade and clusters of calcium oxalate crystals scattered in the spongy cells.
- The midrib shows a broken ring of lignified pericyclic fibers surrounding the phloem and a complete ring of xylem surrounding a narrow central parenchymatous pith.

Microscopical Identification:

- Powdered Jaborandi is greyish green to greenish-brown in color, with a slightly aromatic odor and a bitter and aromatic taste.
- Microscopically, it is characterized by:
 - Fragments of upper epidermis showing polygonal tabular cells with straight beaded anticlinal walls, smooth cuticle and no stomata.
 - Fragments of lower epidermis showing polygonal cells with slightly wavy anticlinal walls, smooth cuticles, and anomocytic stomata.
 - Unicellular non-glandular hair with a smooth cuticle and pointed tip.
 - Clusters of calcium oxalate.
 - Fragments of xylem vessels and pericyclic fibers.

Active Constituents:

1. Alkaloids (0.7-0.8%) (pilocarpine, isopilocarpine, pilosine and isopilosine).
2. Volatile oil (0.5%).

Therapeutic Uses:

1. The action of pilocarpine is antagonistic to that of atropine, and salts of pilocarpine (e.g. pilocarpine nitrate) are used in ophthalmic preparations, since they cause contraction of the pupil of the eye (Myotic effect).
2. In treatment of glaucoma.

Chemical Identification:

Helch's test (for pilocarpine):

- Boil 1 g of powdered jaborandi with 10 mL of diluted sulfuric acid,

filter, cool and add to the filtrate 2 drops of H_2O_2 solution, 2 drops of $K_2Cr_2O_7$ solution, then shake with 10 mL of benzene, a violet color appears in the benzene layer and yellow color appears in the aqueous layer.

Bearberry Leaf

Synonyms: Red Bearberry Leaf, Uva-ursi, Mountain Box Leaf.

Part Used:

- Dried leaves of *Arctostaphylos uva-ursi* (Fam. Ericaceae).
- Bearberry leaf contains not more than 2.0% of foreign organic matter.

Morphological Description:

- The leaf is simple, very shortly petiolate and the lamina is spatulate or obovate and is dark green to brownish green in color.
- The apex is obtuse or rounded, not notched and the base is symmetric, gradually tapering into a short petiole.
- The margin is entirely and slightly revolute.
- The upper surface is dark green or yellowish green in color, shining, glabrous and assuming a chequered or wrinkled appearance, owing to the sunken veins and veinlets.
- The lower surface is grayish-green or yellowish green in color, with dark slightly raised veins, glabrous, except near the base and on the petiole and showing no raised brown spots.
- The texture is coriaceous, and the fracture is short.
- Bearberry leaves have no marked odor but are strongly astringent and somewhat bitter to taste.

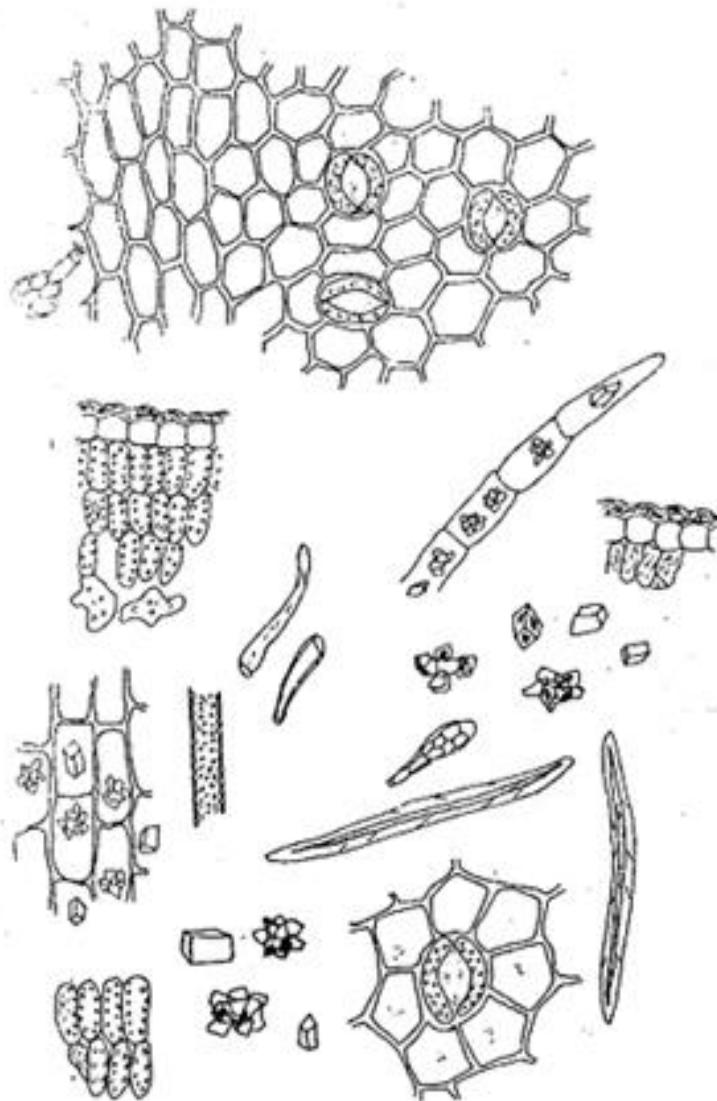
Histological Description:

- The leaf shows a dorsiventral structure.

1. The Epidermis:

- It consists of polygonal cells with straight walls and thick smooth cuticle, showing stomata on the lower surface only, of anomocytic (ranunculaceous) type, surrounded by 4-7, sometimes up to 9 cells.
- Hairs are very few, mostly broken, and present in the petiole and margin especially in young leaves.
- Glandular hairs have short bicellular stalks and multicellular secreting ovoid heads.
- Non-glandular hairs are unicellular, conical, and thick-walled.

2. The Mesophyll:


- It shows a palisade of 3-5, mostly 3 layers of short cells, containing oil droplets in most of the cells.
- Cortical tissue of midrib and veins consists mostly of axially elongated collenchymatous cells and containing irregular prismatic crystals of calcium oxalate.
- Vascular bundles are accompanied by arcs of pericyclic, narrow, lignified thick-walled fibers.

Microscopical Identification:

- Powdered Bearberry leaf is dark green or olive-green to dusty yellow in color, with no marked odor and a strongly astringent, somewhat bitter taste.
- Microscopically, it is characterized by:
 - Epidermal cells with or without stomata of anomocytic (ranunculaceous) type.
 - Fragments of mesophyll with cells containing chloroplasts, oil droplets and frequently starch granules.
 - Fragments of vascular bundles with spiral vessels associated with narrow strongly lignified fibers and

frequently with cells containing prismatic crystals of calcium oxalate.

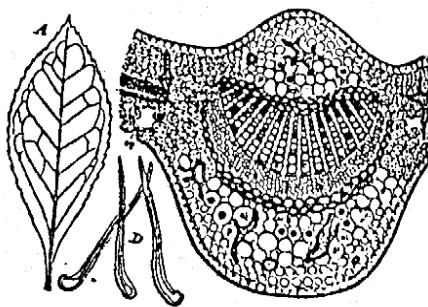
- Fragments of cells containing a yellowish-brown substance (tannins), which stains bluish black with FeCl_3 solution.
- Occasional hairs and prisms of calcium oxalate.

Constituents:

1. Phenolic glycosides (arbutin and ericolin). Arbutin yields upon hydrolysis with dilute HCl hydroquinone and glucose.

2. A crystalline resinous principle (ursone).
3. Tannins (5%) (gallic acid and ellagic acid).
4. A yellow crystalline coloring principle.

Therapeutic Uses:


As a stimulant diuretic and antiseptic in diseases of the urinary tract. It resembles Buchu in its action but is more astringent.

Chemical Identification:

1. Place a fragment of Bearberry leaf in vanillin/HCl solution, a carmine-red color is produced.
2. Place 0.1 g of powdered Bearberry leaf in a small crucible, moisten with dilute HCl, cover the crucible with a microscopic slide and heat gently; a crystalline sublimate of hydroquinone, consisting of long rods and feather-like aggregates is formed on the slide.
3. The crystalline sublimate shows a brilliant play of colors in polarized light, and gives, when mixed with a few drops of a dilute solution of NH₄OH, a solution which gradually becomes dark brown.
4. Boil 0.1 g of broken or powdered Bearberry leaf with 5 mL of H₂O for a minute, filter and add to the filtrate a drop of FeCl₃ solution; a blue or violet color is produced and after some time a violet precipitate is formed.

Tea Leaf**Part Used:**

- Dried prepared leaves and leaf buds of *Thea sinensis* (Fam. Theaceae).

Morphological Description:

- The full-grown tea leaf is dark green in color, glossy on the upper surface and lanceolate or elliptical in outline.
- The apex is blunt or acuminate and the leaf tapers at the base into a short stalk.
- The margin is distinctly and shortly serrate, the serrations terminating in characteristic, glandular teeth, which readily break off and are often absent in mature leaves.
- Young leaves are covered with silky hairs, but as they mature these are lost and the surface becomes almost glabrous.

Histological Description:

- The leaf shows a dorsiventral structure.

1. The Epidermis:

- It consists of polygonal tabular cells with slightly wavy anticlinal walls and showing stomata of anomocytic type on the lower surface only. Unicellular, thick-walled, conical linear trichomes are found, especially in young leaves.

2. The Mesophyll:

- It shows discontinuous palisade of two layers below the upper epidermis. The spongy tissue shows parenchyma cells and abundant lignified

branching sclereids. Scattered calcium oxalate clusters are found in the mesophyll.

3. The Midrib:

- It is more prominent on the lower side and shows an upper and lower subepidermal collenchyma.
- The meristele consists of an arc of xylem and phloem subtended by pericyclic fibers from above and below.

Active Constituents:

1. The alkaloid caffeine (trimethylxanthine) (1-5%).
2. Traces of the alkaloids theobromine (dimethylxanthine) and its isomer, theophylline.
3. Tannins (10-24%).
4. Flavonoids, catechins, biflavonoids, polyphenols.

Therapeutic Uses:

1. As CNS stimulant due to its content of caffeine.
2. Caffeine is a mild diuretic, with less diuretic effect than theobromine.
3. Delays the onset of arteriosclerosis, offsets mental fatigue.
4. Weak smooth muscle relaxant.

 - Large doses of tea cause gastritis, irritation of the stomach in peptic ulcers, nervous irritability, extrasystole of cardiac muscles, constipation and induce habituation.

Chemical Identification:

Test for alkaloids (Murexide test):

- Evaporate a 10% aqueous decoction of tea leaf. To the residue, add 1 mL of conc. HCl then evaporate to dryness. Expose the residue to vapors of NH₄OH; a purple color is produced, which disappears on addition of KOH solution.

Boldo Leaf

Part Used:

- Dried leaves of *Peumus boldus* (Fam. Monimiaceae).
- Boldo contains not more than 2.0% of foreign organic matter.

Morphological Description:

- The leaf is simple, shortly petiolate, the lamina is broadly ovate, oblong ovate, or elliptical and is pale green or greyish green to silvery gray in color.
- The apex is obtuse, rarely slightly emarginate and the base is symmetric.
- The margin is entire, slightly revolute and the texture is coriaceous and brittle.
- The upper surface is rough due to numerous protuberances; each crowned with a stellate hair and the lower surface shows only few protuberances.
- Boldo has a slight aromatic odor and a slightly pungent, bitter and aromatic taste.

Histological Description:

- The leaf has a dorsiventral structure.

1. The Epidermis:

- It consists of polygonal cells with thick, straight, or slightly wavy walls, showing stomata on the lower surface only, mostly of anomocytic (ranunculaceous) type and few stomata of paracytic (rubiaceous) type.
- Non-glandular hairs are present on both surfaces, generally few stellate, each formed of 4-9 thick-walled unicellular hairs, usually carried on pluriseriate multicellular projections.
- The hypodermis lies below the upper epidermis and is formed of 2 or 3 layers of colorless thick-walled cells.

2. The Mesophyll:

- It shows one, usually two layers of palisade cells with brown contents, loosely arranged spongy parenchyma and large spherical secretion cells with suberized walls and traversed, in the margin, by a strand of fibers.

3. The Midrib:

- It shows fibrous pericycle below an arc of vascular bundles and a group of fibers occupying the concavity of the arc, in which two small vascular bundles are embedded.

Microscopical Identification:

- Powdered Boldo is greyish-green in color, with a slight aromatic odor and a slightly pungent, bitter and aromatic taste.
- Microscopically, it is characterized by:
 - Epidermal cells with or without stomata of anomocytic (ranunculaceous) type.
 - Greenish-brown fragments showing secretion cells.
 - Hairs, stellate or separated into single ones.

Active Constituents:

1. Volatile oil (up to 2%).
2. An alkaloid (boldine) (2%).
3. A glycoside (boldoglucone).
4. A resinous substance.
5. Tannic acid.

Therapeutic Uses:

1. Aromatic stimulant and mild diuretic.
2. A hepatic stimulant in cases of jaundice.

Chemical Identification:

Macerate 1 g of powdered Boldo leaf in 10 mL of dilute HCl for 20 minutes, filter

and evaporate a few drops of the filtrate on a H_2O bath. Mix the residue with a drop of vanillin/HCl solution; an intense red color is produced.

Henna Leaf

Part Used:

- Dried leaves of *Lawsonia alba* (Fam. Lythraceae).

Morphological Description:

- Leaves are simple, shortly petiolate, opposite, and greenish brown in color.
- The lamina is oblong, broadly lanceolate, with a mucronate apex and a tapering base.
- The margin is entire, revolute and venation is reticulate pinnate.
- Henna has a slight characteristic odor, a slightly bitter mucilaginous taste and colors the saliva yellow.

Histological Description:

- The leaf shows an isobilateral structure.

1. The Epidermis:

- Both upper and lower epidermises consist of polygonal tabular cells with straight or slightly wavy anticlinal walls, striated cuticle and with stomata of paracytic and anomocytic types.

2. The Mesophyll:

- It shows two layers of discontinuous palisade above and below.
- Spongy cells show abundant cluster crystals of calcium oxalate.
- The midrib shows upper and lower hypodermal collenchyma and a bicollateral vascular bundle, surrounded by an arc of lignified pericyclic fibers.

Active Constituents:

1. A coloring substance (lawsone).
2. Two coumarin derivatives.
3. A flavonoid (luteolin glucoside).
4. Henna tannin.
5. Fats and mucilage.

Therapeutic Uses:

1. As a natural dye for hair, in the form of an aqueous decoction.
2. Antifungal and antiseptic for the skin and scalp.

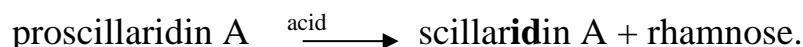
Chemical Identification:

For lawsone:

- Boil 1 g of powdered henna in 20 mL of H_2O for one minute, filter; the filtrate is orange to orange brown in color.
 - Add 2 mL of the filtrate to 2 mL of dilute HCl; the color fades away.
 - Add 2 mL of KOH solution to 2 mL of the filtrate; A deep orange color is produced.
 - Add 2 mL of dilute NH_4OH solution to 2 mL of the filtrate; a titan red color is produced.
 - Add 2 mL of 5% Na_2CO_3 solution to 2 mL of the filtrate; an orange-yellow color is produced.

Squill- bulbus scillae

- Squill is the dried sliced fleshy scales of the bulb of *Urginea maritima* (L) Baker, Fam. Liliaceae.
- Collected shortly after withering of flowers and leaves and known as white squill. Squill contains not more than 2% of foreign organic matter.
- The white squill is collected in Sicily and Malta.


Macroscopical Characters:

- Squill occurs in irregular, curved flattened, narrow, pieces frequently tapening towards both ends and measuring 0.5-5 cm long, 5-8 mm wide and 2-5 mm thick.
- They are yellowish white to pale yellow in colour.
- The drug is brittle when dry, though and flexible when absorbing moisture.
- The fracture is short. The slices show raised slightly darker points or lines (vascular bundles).
- Squill has a slight odour and a mucilaginous bitter acrid taste.

N.B. The mesophyll shows many scattered axially elongated cells contain bundles of large raphides of calcium oxalate. Embedded in mucilage, which stains pink alkaline corallin soda neither but nor with ruthenium red.

Constituents

Squill contains the cardiac glycosides scillaren A and the amorphous mixture of glycosides scillaren B.

Uses:

- 1- Squill has digitalis like action on the heart i.e. heart tonic.
- 2- In small doses as expectorant and in large doses as emetic.

Red Squill: A variety of *Urginea maritima* is used as rat poison. It contains scillaren A and B together with scilliroside. It is distinguished from white by variety, the reddish-brown colour.

Mentha

Origin: The dried leaves and flowering tops of *Mentha piperita*

Fam: Labiatae.

Geo. Sou: Egypt, Europe, America.

Morphology:

Shape: ovate, petiole: short, apex: acute, color: green, odour: obtuse, margin: serrate, taste: bitter, odour: aromatic, venation: reticulate.

Active Constituents:

Volatile oil (menthol, menthyl acetate, limonene, pinene, terpene, terpene esters).

Uses:

- 1- Flavoring agent, carminative, stimulant and in confectionery.
- 2- Counter irritant.
- 3- In chewing gum, toothpaste, mouth wash.

Powder:

- Stomata diacetic
- Labiateous hair.
- Nonglandular hair.
- Hairs with multicellular, stalk, unicellular hairs.

Rosmary

Origin: Dried leaves and flowering tops of *Rosmarinus officinalis* Linn. Fam. Labiatae.

Geo. Sou: Europe, America, Spain and Africa.

Description: Shape: linear lanceolate,

Petiole: sessile, color: green, odour: obtuse,

Margin: entire, taste: slight, odour: odourless.

Active Constituents:

- Volatile oil (borneol, bornyl acetate).
- Triterpene alcohol, amyrin. Betulin.
- sitosterol.

Uses: Flavoring agent, carminative.

Coca Leaf

Part Used:

- Dried leaves of *Erythroxylum coca* (Bolivian Coca) or of *E. truxillense* (Peruvian Coca) (Fam. Erythroxylaceae).
- Coca leaf contains not more than 2% of foreign organic matters and yields not less than 0.7% of total alkaloids of Coca leaf, calculated as cocaine.

Active Constituents:

1. Alkaloids (0.75-1.5%), the most important of which is cocaine.
2. Other alkaloids include cinnamylcocaine and b-truxilline. The alkaloids are localized in the upper epidermal cells and parenchyma of secondary veins.
3. Cocatannic acid.

Therapeutic Uses:

1. As CNS stimulant and tonic.
2. As local anaesthetic.
3. Cocaine hydrochloride, when administered hypodermally or applied on an exposed surface, rapidly paralyses the sensory nerves and thus produces local anesthesia. It is therefore much used in minor surgical operations of the eye, nose, ear, etc.
4. The use of Coca is highly restricted because of its strong addictive properties.

Tests for Purity:

- Test for Alkaloids (Mayer's test):
 - Shake powdered Coca with diluted HCl, filter, and add to the filtrate few drops of potassium-mercuric iodide solution (Mayer's reagent); a white precipitate is immediately formed.

Eucalyptus leaves

Eucalyptus leaves are obtained from *Eucalyptus globulus* Fam. Myrtaceae. Eucalyptus trees possess two kinds of leaves these on young plants being cordate and sessile, while those on mature trees are petiolate, ensiform.

Both kinds of leaf contain oil glands in the mesophyll and used for preparation of Eucalyptus oil.

Constituents:

1- When fresh contains 3-5% of volatile oil (cineol, pinene, limonene, phellandrene, terpine).

2- The leaves also contain tannin.

Uses:

- 1- As aromatic fragrance soap and perfume.
- 2- As relaxant in aromatherapy.
- 3- As astringent, they have also employed in form of cigarette for asthma.
- 4- Effective as for common cold as decongestant and in catarrh and sinusitis.
- 5- The volatile oil has antiseptic properties, rubefacient in rheumatism.

Guava leaves

The leaves of *Psidium guajava* L. Fam Myrtaceae.

It is native to tropical America cultivated in many countries in the world.

Constituents:

- 1- Volatile oil (cineole, limonene, cadinol alcohol).
- 2- Resins, tannins ellagic acid.
- 3- Flavonoid quercetin, its glycoside aircularin, guaiaverine.

Uses:

- 1- Astringent.
- 2- Antiseptics for respiratory tract in cough.

Sweet Basil

The dried leaves of *Ocimum basilicum* L. Fam. Labiateae.

The plant grows wild in Asia and is now cultivated in the Mediterranean area and in the Island of Indian Ocean.

Active constituents.

- Volatile oil (65-85% methyl chavicol, small amount of cineol, fenchol, linalool and methyleugenol).

Uses: The leaf may be claim digestive.

Sweet Marjoram

The dried leaves of *Origanum majorana* L. Fam. Labiatae.

The plant is widespread in all of the Mediterranean area (Egypt).

Active constituents:

The plant contains essential oil, which contains terpinenes, terpineol, and linalol the plant contains carvacrol.

Uses:

- 1- The plant is traditionally used to treat acute benign bronchial disease.
- 2- For the symptomatic treatment of functional dyspepsia.
- 3- Marjoram is used locally to relieve the symptoms of the cold such as nasal decongestant and for oral hygiene.

References:

Batanouny, K.H. (1999). *Wild medicinal plants in Egypt*. Palm Press, Cairo, Egypt.

Boulus, L. (1995). *Medicinal plants of North Africa*.

Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A. and Brielmann, H.L. (2006). *Natural Products from Plants*. 2nd ed. Taylor & Francis Group, LLC, London, New York.

Egyptian Pharmacopoea (1984). General Organization for Governmental Printing Affairs, Cairo.p.31 (1984).

Täckholm, V. (1974). *Students' Flora of Egypt*. 2nd edition, Beirut. Cairo University. 888 p.

Trease GE, Evans WC (2002). Pharmacognosy. 15th Edn. Saunders, pp. 214-393.

Trease GE, Evans WC (1983). Textbook of Pharmacognosy. 12th edn. Balliese Tindall and Company Publisher, London. pp 343-383.

Taha S. El Alfy. (1989). Practical Pharmacognosy. Faculty of Pharmacy Cairo University Press. Cairo.

Betty P. Jackson and Derek W. Snowdon. (1990). Atlas of microscopy of medicinal plants, culinary herbs, and spices. New Delh, Crc Pr I Llc; First edition, London, 257pp.

W.H.O (1998). Quality control methods for medicinal plant materials. Geneva, World Health Organization,

WHO, (2003), Good manufacturing practices for pharmaceutical products: main principles. Expert Committee on Specific cations for Pharmaceutical Preparations. Thirty-seventh report. Geneva, World Health Organization.